Skip to main content

Polyrotaxanes: Synthesis, Structure, and Chemical Properties

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Mechanically interlocked molecules

Definition

Polyrotaxanes are defined as molecular assemblies, in which many macrocycles are mechanically interlocked on a dumbbell-shaped molecule by bulky stoppers on its ends.

Introduction

Macrocycles rotate freely and translate on the axis in a dumbbell-shaped molecule in the rotaxane system. Since rotaxanes are one of the important components of molecular machines based on such structural features, rotaxanes have attracted increasing interest of researchers from nanotechnological aspects. The first artificial rotaxane was reported in 1967 [1]. Harrison et al. synthesized a [2]rotaxane (two in brackets indicates the number of components) by statistical reaction between a macrocycle and a dumbbell-shaped molecule. However, the yield of single reaction was very low. Harada et al. reported the first example of a polyrotaxane, in which a number of α-cyclodextrin (α-CD) molecules are interlocked on a poly(ethylene glycol) (PEG) chain by bulky...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harrison IT, Harrison S (1967) Synthesis of a stable complex of a macrocycle and a threaded chain. J Am Chem Soc 89:5723–5724

    CAS  Google Scholar 

  2. Harada A, Kamachi M (1990) Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules 23:2821–2823

    CAS  Google Scholar 

  3. Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Polymeric rotaxanes. Chem Rev 109:5974–6023

    CAS  Google Scholar 

  4. Arunachalam M, Gibson HW (2014) Recent developments in polypseudorotaxanes and polyrotaxanes. Prog Polym Sci. doi:10.1016/j.progpolymsci.2013.11.005

    Google Scholar 

  5. Harada A, Li J, Kamachi M (1992) The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356:325–327

    CAS  Google Scholar 

  6. Harada A, Li J, Kamachi M (1994) Preparation and characterization of a polyrotaxane consisting of monodisperse poly(ethylene glycol) and α-cyclodextrins. J Am Chem Soc 116:3192–3196

    CAS  Google Scholar 

  7. Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487

    CAS  Google Scholar 

  8. Fleury G, Schlatter G, Brochon C, Hadziioannou G (2006) Unveiling the sliding motion in topological networks: influence of the swelling solvent on the relaxation dynamics. Adv Mater 18:2847–2851

    CAS  Google Scholar 

  9. Harada A, Li J, Kamachi M (1993) Synthesis of a tubular polymer from threaded cyclodextrins. Nature 364:516–518

    CAS  Google Scholar 

  10. Okada M, Harada A (2003) Poly(polyrotaxane): photoreactions of 9-anthracene-capped polyrotaxane. Macromolecules 36:9701–9703

    CAS  Google Scholar 

  11. Herrmann W, Schneider M, Wenz G (1997) Photochemical synthesis of polyrotaxanes from stilbene polymers and cyclodextrins. Angew Chem Int Ed Engl 36:2511–2514

    CAS  Google Scholar 

  12. Gibson HW, Liu S, Lecavalier P, Wu C, Shen YX (1995) Synthesis and preliminary characterization of some polyester rotaxanes. J Am Chem Soc 117:852–874

    CAS  Google Scholar 

  13. Rowan SJ, Stoddart JF (2002) Surrogate-stoppered [2]rotaxanes: a new route to larger interlocked architectures. Polym Adv Technol 13:777–787

    CAS  Google Scholar 

  14. Takata T (2006) Polyrotaxane and polyrotaxane network: supramolecular architectures based on the concept of dynamic covalent bond chemistry. Polym J 38:1–20

    CAS  Google Scholar 

  15. Gibson HW, Bryant WS, Lee S-H (2001) Polyrotaxanes by free-radical polymerization of acrylate and methacrylate monomers in the presence of a crown ether. J Polym Sci Part A Polym Chem 39:1978–1993

    CAS  Google Scholar 

  16. Fang L, Olson MA, Benitez D, Tkatchouk E, Goddard WA III, Stoddart JF (2010) Mechanically bonded macromolecules. Chem Soc Rev 39:17–29

    CAS  Google Scholar 

  17. Oku T, Furusho Y, Takata T (2004) A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew Chem Int Ed 43:966–969

    CAS  Google Scholar 

  18. Kim K (2002) Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem Soc Rev 31:96–107

    CAS  Google Scholar 

  19. Lee D-W, Park KM, Banerjee M, Ha SH, Lee T, Suh K, Paul S, Jung H, Kim J, Selvapalam N, Ryu SH, Kim K (2011) Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host–guest binding pair. Nat Chem 3:154–159

    CAS  Google Scholar 

  20. Tuncel D, Steinke JHG (1999) Catalytically self-threading polyrotaxanes. Chem Commun 35:1509–1510

    Google Scholar 

  21. Frampton MJ, Anderson HL (2007) Insulated molecular wires. Angew Chem Int Ed 46:1028–1064

    CAS  Google Scholar 

  22. Gong H-Y, Rambo BM, Karnas E, Lynch VM, Sessler JL (2010) A ‘Texas-sized’ molecular box that forms an anion-induced supramolecular necklace. Nat Chem 2:406–409

    CAS  Google Scholar 

  23. Aprahamian I, Miljanic OS, Dichtel WR, Isoda K, Yasuda T, Kato T, Stoddart JF (2007) Clicked interlocked molecules. Bull Chem Soc Jpn 80:1856–1869

    CAS  Google Scholar 

  24. Liu Y, Wang H, Zhang H-Y, Liang P (2004) A metallo-capped polyrotaxane containing calix[4]arenes and cyclodextrins and its highly selective binding for Ca2+. Chem Commun 40:2266–2267

    Google Scholar 

  25. Yamagishi T-A, Kawahara A, Kita J, Hoshima M, Umehara A, Ishida S-I, Nakamoto Y (2001) In situ polycondensation of p-tert-butylphenol in the presence of poly(ethylene glycol)s for preparation of polyrotaxanes. Macromolecules 34:6565–6570

    CAS  Google Scholar 

  26. Ogoshi T, Kanai S, Fujinami S, Yamagishi T-A, Nakamoto Y (2008) para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc 130:5022–5023

    CAS  Google Scholar 

  27. Champin B, Mobian P, Sauvage J-P (2007) Transition metal complexes as molecular machine prototypes. Chem Soc Rev 36:358–366

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yamaguchi, H., Harada, A. (2015). Polyrotaxanes: Synthesis, Structure, and Chemical Properties. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_47

Download citation

Publish with us

Policies and ethics