Skip to main content

Surface Active Nanoparticles for Interfacial Catalysis

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Aqueous reaction; Interface catalysis pickering emulsions

Definition

Due to the large reaction interface area, Pickering emulsions are emerging as a new platform to design a variety of aqueous reaction systems. The catalysis efficiency and selectivity can be significantly enhanced with the unique oil/water interface.

Background

Using water as reaction solvent is a long-standing goal in view of the fact that all reactions in living systems occur in water and of its unique properties such as low toxicity, noninflammability, low volatility, high heat capacity, and easy separation from most organics [1, 2]. In past decades, researchers have attempted to utilize water as reaction medium in place of organic solvents. Many important reactions such as hydrogenation, oxidation, hydroformylation, C–C coupling, Diels–Alder cycloadditions, Claisen rearrangements, and Fischer–Tropsch (F-T) synthesis have been carried out in water. Among these reactions, aqueous hydroformylation and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chanda A, Fokin VV (2009) Organic synthesis “on water”. Chem Rev 109:725–748

    CAS  Google Scholar 

  2. Minakata S, Komatsu M (2009) Organic reactions on silica in water. Chem Rev 109:711–724

    CAS  Google Scholar 

  3. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100:503–546

    Google Scholar 

  4. Tsuji S, Kawaguchi H (2008) Thermosensitive Pickering emulsion stabilized by poly(N-isopropylacrylamide)-carrying particles. Langmuir 24:3300–3305

    CAS  Google Scholar 

  5. Yan NX, Gray MR, Masliyah JH (2001) On water-in-oil emulsions stabilized by fine solids. Colloids Surf A 193:97–107

    CAS  Google Scholar 

  6. Fielding LA, Armes SP (2012) Preparation of Pickering emulsions and colloidosomes using either a glycerol-functionalised silica sol or core-shell polymer/silica nanocomposite particles. J Mater Chem 22:11235–11244

    CAS  Google Scholar 

  7. Pickering SU (1907) CXCVI. – Emulsions. J Chem Soc 91:2001–2021

    Google Scholar 

  8. Ramsden W (1903) Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). – Preliminary account. Proc R Soc 72:156–164

    CAS  Google Scholar 

  9. Crossley S, Faria J, Shen M, Resasco DE (2010) Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327:68–72

    CAS  Google Scholar 

  10. Shen M, Resasco DE (2009) Emulsions stabilized by carbon nanotube-silica nanohybrids. Langmuir 25:10843–10851

    CAS  Google Scholar 

  11. Drexler S, Faria J, Ruiz MP, Harwell JH, Resasco DE (2012) Catalysts for reactions at the water/oil interface in subsurface. Reservoirs Energy & Fuels 26:2231–2241

    Google Scholar 

  12. Zhang L, Balzano L, Resasco DE (2005) Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties. J Phys Chem B 109:14375–14381

    CAS  Google Scholar 

  13. Liu HF, Zhang ZM, Yang HQ, Cheng FQ, Du ZP (2014) Recycling nanoparticle catalysts without separation based on a Pickering emulsion/organic biphasic system. ChemSusChem 7:1888–1900

    CAS  Google Scholar 

  14. Yang XM, Wang XN, Qiu JS (2010) Aerobic oxidation of alcohols over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets. Appl Catal A Gen 382:131–137

    CAS  Google Scholar 

  15. Yu C, Fan LM, Yang J, Shan YY, Qiu JS (2013) Phase-reversal emulsion catalysis with CNT-TiO2 nanohybrids for the selective oxidation of benzyl alcohol. Chem Eur J 19:16192–16195

    CAS  Google Scholar 

  16. Leclercq L, Mouret A, Proust A, Schmitt V, Bauduin P, Aubry JM, Nardello-Rataj V (2012) Pickering emulsion stabilized by catalytic polyoxometalate nanoparticles: a new effective medium for oxidation reactions. Chem Eur J 18:14352–14358

    CAS  Google Scholar 

  17. Leclercq L, Company R, Muhlbauer A, Mouret A, Aubry JM, Nardello-Rataj V (2013) Versatile eco-friendly Pickering emulsions based on substrate/native cyclodextrin complexes : a winning approach for solvent-free oxidations. ChemSusChem 6:1533–1540

    CAS  Google Scholar 

  18. Zapata PA, Faria J, Ruiz MP, Resasco DE (2012) Condensation/hydrogenation of biomass-derived oxygenates in water/oil emulsions stabilized by nanohybrid catalysts. Top Catal 55:38–52

    CAS  Google Scholar 

  19. Zapata PA, Faria J, Ruiz MP, Jentoft RE, Resasco DE (2012) Hydrophobic zeolites for biofuel upgrading reactions at the liquid–liquid interface in water/oil emulsions. J Am Chem Soc 134:8570–8578

    CAS  Google Scholar 

  20. Wu CZ, Bai S, Ansorge-Schumacher MB, Wang DY (2011) Nanoparticle cages for enzyme catalysis in organic media. Adv Mater 23:5694–5699

    CAS  Google Scholar 

  21. Wiese S, Spiess AC, Richtering W (2013) ) Microgel-stabilized smart emulsions for biocatalysis. Angew Chem Int Ed 52:576–579

    CAS  Google Scholar 

  22. Scott G, Roy S, Abul-Haija YM, Fleming S, Bai S, Ulijn RV (2013) Pickering stabilized peptide gel particles as tunable microenvironments for biocatalysis. Langmuir 29:14321–14327

    CAS  Google Scholar 

  23. Wang ZP, C. M. van Oers M, P. J. T. Rutjes F, C. M. van Hest J (2012) Polymersome colloidosomes for enzyme catalysis in a biphasic system. Angew Chem Int Ed 51:10746–10750

    Google Scholar 

  24. Fan ZY, Tay A, Pera-Titus M, Zhou WJ, Benhabbari S, Feng XS, Malcouronne G, Bonneviot L, Campo FD, Wang LM, Clacens JM (2013) Pickering Interfacial Catalysts for solvent-free biomass transformation: Physicochemical behavior of non-aqueous emulsions. J Colloid Interface Sci 427:80–90

    Google Scholar 

  25. Zhou WJ, Fang L, Fan ZY, Albela B, Bonneviot L, Campo FD, Pera-Titus M, Clacens JM (2014) Tunable catalysts for solvent-free biphasic systems: Pickering Interfacial catalysts over amphiphilic silica nanoparticles. J Am Chem Soc 136:4869–4872

    CAS  Google Scholar 

  26. Zhang WJ, Fu LM, Yang HQ (2014) Micrometer-scale mixing with Pickering emulsions: Biphasic reactions without stirring. ChemSusChem 7:391–396

    CAS  Google Scholar 

  27. Yu YH, Fu LM, Zhang FW, Zhou T, Yang HQ (2014) Pickering-emulsion inversion strategy for separating and recycling nanoparticle catalysts. ChemPhysChem 5:841–848

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hengquan Yang or Dayang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yang, H., Rong, X., Wang, D. (2015). Surface Active Nanoparticles for Interfacial Catalysis. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_360

Download citation

Publish with us

Policies and ethics