Skip to main content

Polymers for Charge Storage

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Polymeric supercapacitors; Polymers for battery electrodes; Polymers for electrochemical capacitors; Polymers for energy storage

Definition

Polymers for charge storage: polymers that can be used to store energy for use in batteries or electrochemical capacitors.

Introduction

Current and emerging electronic devices have exacerbated the need for improvements in high-performance charge storage devices (CSDs). While traditional CSDs have relied on inorganic materials, such as metals and metal oxides [1], researchers are turning more and more to organic polymers for their charge storage ability [2]. Electroactive polymers (EAPs) rely on oxidation and reduction (redox) processes to store and release charge. These polymers can be used to store energy in batteries as well as in electrochemical capacitors. The advantages of EAPs in CSDs include high conductivity, mechanical flexibility, chemical stability, raw material availability, ease of manufacturing, low cost, and reduced...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269. doi:10.1021/cr020730k

    CAS  Google Scholar 

  2. Irvin J, Irvin D, Stenger-Smith JD (2007) Electrically active polymers for use in batteries and supercapacitors. In: Skotheim T, Reynolds JR (eds) Conjugated polymers: processing and applications, 3rd edn, Handbook of conducting polymers. Taylor & Francis, Boca Raton

    Google Scholar 

  3. Zarras P, Irvin JA (2004) Electrically active polymers. In: Encyclopedia of polymer science and technology, 3rd edn. Wiley Interscience, New York

    Google Scholar 

  4. Holze R, Wu YP (2013) Intrinsically conducting polymers in electrochemical energy technology: trends and progress. Electrochim Acta. doi:10.1016/j.electacta.2013.08.100

    Google Scholar 

  5. Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymers-based electrochemical supercapacitors – progress and prospects. Electrochim Acta 101:109–129. doi:10.1016/j.electacta.2012.09.116

    CAS  Google Scholar 

  6. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12. doi:10.1016/j.jpowsour.2010.06.084

    CAS  Google Scholar 

  7. Katz HE, Searson PC, Poehler TO (2010) Batteries and charge storage devices based on electronically conducting polymers. J Mater Res 25(8):1561–1574. doi:10.1557/JMR.2010.0201

    CAS  Google Scholar 

  8. Stenger-Smith JD, Irvin JA (2009) Ionic liquids for energy storage applications. Mater Matter 4(3):103–105, http://www.sigmaaldrich.com/technical-documents/articles/material-matters/ionic-liquids-for.html

    CAS  Google Scholar 

  9. Long JW, Dunn B, Rolison DR, White HS (2004) Three-dimensional battery architectures. Chem Rev 104(10):4463–4492. doi:10.1021/cr020740l

    CAS  Google Scholar 

  10. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498. doi:10.1016/S0013-4686(00)00354-6

    CAS  Google Scholar 

  11. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950. doi:10.1016/S0008-6223(00)00183-4

    CAS  Google Scholar 

  12. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462. doi:10.1021/cr020738u

    CAS  Google Scholar 

  13. Novak P, Muller K, Santhanam KSV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97:207–281. doi:10.1021/cr941181o

    CAS  Google Scholar 

  14. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418. doi:10.1021/cr030203g

    CAS  Google Scholar 

  15. Kraft A (1997) Conducting polymers. In: Jones W (ed) Organic molecular solids: properties and applications. CRC Press, Boca Raton

    Google Scholar 

  16. Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferraris JP (1994) Conducting polymers as active materials in electrochemical capacitors. J Power Sources 47:89–107. doi:10.1016/0378-7753(94)80053-7

    CAS  Google Scholar 

  17. Stenger-Smith JD, Lai WW, Irvin DJ, Yandek GR, Irvin JA (2012) Electroactive polymer-based electrochemical capacitors using poly(benzimidazobenzophenanthroline) and its pyridine derivative poly(4-aza-benzimidazobenzophenanthroline) as cathode materials with ionic liquid electrolyte. J Power Sources 220:236–242. doi:10.1016/j.jpowsour.2012.07.068

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Irvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Irvin, J.A., Iszard, Z.W. (2015). Polymers for Charge Storage. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_205

Download citation

Publish with us

Policies and ethics