Skip to main content

Telechelic Polymer: Preparation and Application

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

End-functionalized polymer; Terminal reactive polymer

Definition

Telechelic polymer is a class of reactive polymer possessing reactive functional groups at the chain ends, which are, not from monomers, deliberately introduced for further reactions. Polymers with complex architectures (nonlinear) bearing reactive groups at each of the chain ends are included in this category. It is acceptable that the polymer chain ends have either the same or different reactive functional groups. The latter asymmetrical telechelic polymers are distinctively called “heterotelechelic” polymers. Telechelic polymers are distinctively termed based on the number of reactive end groups: the terms “hemi-,” “di-,” and “tri-telechelic” polymers are used for polymers with one, two, and three reactive end groups, respectively (Fig. 1) [1]. Polymers having many reactive end groups are called “polytelechelic” polymers. Macromonomers in a strict sense are the special case of the hemi-telechelic polymers, in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goethals EJ (1989) Telechelic polymers: synthesis and applications. CRC Press, Boca Raton

    Google Scholar 

  2. Tasdelen MA, Kahveci MU, Yagci Y (2011) Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci 36:455–567. doi:10.1016/j.progpolymsci.2010.10.002

    CAS  Google Scholar 

  3. Uraneck CA, Hsieh HL, Buck OG (1960) Telechelic polymers. J Polym Sci 148:535–539. doi:10.1002/pol.1960.1204614825

    Google Scholar 

  4. Hirao A, Hayashi M (1999) Recent advance in syntheses and applications of well-defined end functionalized polymers by means of anionic living polymerization. Acta Polym 50:219–231. doi:10.1002/(SICI)1521-4044(19990701)50:7<219::AID-APOL219>3.0.CO;2-U

    CAS  Google Scholar 

  5. Aoshima S, Kanaoka S (2008) A renaissance in living cationic polymerization. Chem Rev 109:5245–5287. doi:10.1021/cr900225g

    Google Scholar 

  6. De P, Faust R (2007) Carbocationic polymerization. In: Matyjaszewski K, Gnanou Y, Leibler L (eds) Macromolecular engineering: precise synthesis, materials properties, applications. Wiley-VCH, Weinheim

    Google Scholar 

  7. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990. doi:10.1021/ma3001719

    CAS  Google Scholar 

  8. Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:1466–1486. doi:10.1021/bm034247a

    CAS  Google Scholar 

  9. Ye Z, Xu L, Dong Z, Xiang P (2013) Designing polyethylenes of complex chain architectures via Pd-diimine-catalyzed “living” ethylene polymerization. Chem Commun 49:6235–6255. doi:10.1039/c3cc42517g

    CAS  Google Scholar 

  10. Baughman TW, Wagener KB (2005) Recent advances in ADMET polymerization. Adv Polym Sci 176:1–42. doi:10.1007/b101318

    CAS  Google Scholar 

  11. Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101:3747–3792. doi:10.1021/cr9901337

    CAS  Google Scholar 

  12. Iha RK, Wooley KL, Nyström AM, Burke DJ, Kade MJ, Hawker CJ (2009) Applications of orthogonal “click” chemistries in the synthesis of functional soft material. Chem Rev 109:5620–5686. doi:10.1021/cr900138t

    CAS  Google Scholar 

  13. Verso FL, Likos CN (2008) End-functionalized polymers: versatile building blocks for soft materials. Polymer 49:1425–1434. doi:10.1016/j.polymer.2007.11.051

    Google Scholar 

  14. Adachi K, Tezuka Y (2009) Topological polymer chemistry in pursuit of elusive polymer ring constructions. J Synth Org Chem Jpn 67:1136–1143. doi:10.5059/yukigoseikyokaishi.67.1136

    CAS  Google Scholar 

  15. Dušek K, Dušková-Smrčková M (2000) Network structure formation during crosslinking of organic coating systems. Prog Polym Sci 25:1215–1260. doi:10.1016/S0079-6700(00)00028-9

    Google Scholar 

  16. Tsukahara Y, Yonemura T, Hashim AS, Kohjiya S, Kaeriyama K (1996) Preparation and properties of epoxidized natural rubber/poly(ε-caprolactone) self-vulcanizable blends. J Mater Chem 6:1865–1870. doi:10.1039/JM9960601865

    CAS  Google Scholar 

  17. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725. doi:10.1016/j.progpolymsci.2007.04.002

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhisa Tsukahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Tsukahara, Y., Adachi, K. (2015). Telechelic Polymer: Preparation and Application. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_201

Download citation

Publish with us

Policies and ethics