Skip to main content

Proteins as Polymers and Polyelectrolytes

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials
  • 132 Accesses

Definition

pI isoelectric point.

Polymeric Molecule

Proteins consist of amino acids conjugated by peptide bonds, which is a type of amide bond formed from a carboxyl group and an amino group in α-amino acids (except for one case). This special type of amide bond is called as a peptide bond and the large molecules (polymers) thus obtained are polypeptides.

A polypeptide is, as with synthetic polyamides, basically a condensation polymer and fundamentally a single and liner polymer. One or more polypeptides form proteins, and in many cases, several (single) proteins form an assembled molecule: a polymeric protein. Each component protein is called a subunit, and a protein having only one subunit is a single-subunit protein.

Proteins perform a wide variety of functions in living organisms, and the size or length of a polypeptide also varies widely. The largest (longest) single protein known is Titin (connectin: contributing to the passive stiffness of the muscle), which has a molecular size...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a.a.:

amino acids

LbL:

layer-by-layer

References

  1. Robson B, Vaithilingam A (2008) Protein folding revisited. In: Conn PM (ed) Molecular biology of protein folding, part B, vol 84, Progress in molecular biology and translational science. Elsevier B.V, Amsterdam, pp 161–202

    Google Scholar 

  2. Sharma V, Kaila VRI, Annila A (2009) Protein folding as an evolutionary process. Physica A 388:851–862. doi:10.1016/j.physa.2008.12.004

    CAS  Google Scholar 

  3. Naganathan AN (2012) Coarse-grained models of protein folding as detailed tools to connect with experiments. Wiley Interdiscip Rev Comput Mol Sci 3:504–514. doi:10.1002/wcms.1133

    Google Scholar 

  4. Rizzuti B, Daggett V (2013) Protein folding and stability: a Prague cemetery. In: Neira JL (ed) Archives biochemistry biophysics, vol 531. Elsevier B.V, Amsterdam, pp 128–135. doi:10.1016/j.abb.2013.02.001

    Google Scholar 

  5. Dill KA (1999) Polymer principles and protein folding. Protein Sci 8:1166–1180

    CAS  Google Scholar 

  6. Zhou HX (2004) Polymer models of protein stability, folding, and interactions. Biochemistry 43:2141–2154. doi:10.1021/bi036269n

    CAS  Google Scholar 

  7. Hsu H-P, Grassberger P (2011) A review of Monte Carlo simulations of polymers with PERM. J Stat Phys 144:597–637. doi:10.1007/s10955-011-0268-x

    Google Scholar 

  8. Jungbauer A, Hahn R (2009) Ion-exchange chromatography. In: Burgess RR, Deutscher MP (eds) Guide to protein purification, 2nd edn. Methods in enzymology, vol 463. Academic, Boston, pp 349–371. doi:10.1016/S0076-6879(09)63022-6

    Google Scholar 

  9. Zhu Z, Lu JJ, Liu S (2012) Protein separation by capillary gel electrophoresis: a. Anal Chim Acta 709:21–31. doi:10.1016/j.aca.2011.10.022

    CAS  Google Scholar 

  10. Righetti PG, Sebastiano R, Citterio A (2013) Capillary electrophoresis and isoelectric focusing in peptide and protein analysis. Proteomics 133:25–340. doi:10.1002/pmic.201200378

    Google Scholar 

  11. Korolev N, Vorontsova OV, Nordenskiold L (2007) Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations. Prog Biophys Mol Biol 95:23–49. doi:10.1016/j.pbiomolbio.2006.11.003

    CAS  Google Scholar 

  12. Wong GCL, Pollack L (2010) Electrostatics of strongly charged biological polymers: ion-mediated interactions and self-organization in nucleic acids and proteins. In: Leone SR, Cremer PS, Groves JT, et al (eds) The annual review of physical chemistry, vol 61. Annual Reviews, Palo Alto, pp 171–189. doi:10.1146/annurev.physchem. 58.032806.104436

    Google Scholar 

  13. Kovensky J (2009) Sulfated oligosaccharides: new targets for drug development? Curr Med Chem 16:2338–2344

    CAS  Google Scholar 

  14. Mulgrew-Nesbitt A, Diraviyam K, Wang J et al (2006) The role of electrostatics in protein-membrane interactions. BBA-Mol Cell Biol Lipids 1761:812–826. doi:10.1016/j.bbalip.2006.07.002

    CAS  Google Scholar 

  15. Perico A, Ciferri A (2009) The supramolecular association of polyelectrolytes to complementary charged surfactants and protein assemblies. Chemistry 22:6312–6320. doi:10.1002/chem.200900637

    Google Scholar 

  16. Ariga K, Ji Q, Hill JP (2010) Enzyme-encapsulated layer-by-layer assemblies: current status and challenges toward ultimate nanodevices. In: Caruso F (ed) Modern techniques for nano- and microreactors/-reactions, vol 229, Advances in polymer science. Springer, Berlin, pp 51–87. doi:10.1007/12_2009_42

    Google Scholar 

  17. Hammond PT (2012) Building biomedical materials layer-by-layer. Mater Today 15:196–206

    CAS  Google Scholar 

  18. Becker AL, Henzler K, Welsch N, Ballauff M, Borisov O (2012) Proteins and polyelectrolytes: a charged relationship. Curr Opin Colloid Interface Sci 17:90–96. doi:10.1016/j.cocis. 2011.10. 001

    CAS  Google Scholar 

  19. Kayitmazer AB, Seeman D, Minsky BB, Dubin PL, Xu YS (2013) Protein- polyelectrolyte interactions. Soft Matter 9:2553–2583. doi:10.1039/c2sm27002a

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kunugi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kunugi, S. (2015). Proteins as Polymers and Polyelectrolytes. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_167

Download citation

Publish with us

Policies and ethics