Skip to main content

Polymers for Transistors

  • Reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials
  • 172 Accesses

Synonyms

Organic field-effect transistor; Organic semiconductor; Plastic electronics

Definition

Polymer: A polymer is a macromolecule with high molecular mass and composed of the repetition of structural units of significantly lower molecular weights. Polymers often possess very different chemical and physical properties compared to the smaller molecules they are composed of.

Transistor: A transistor is a semiconducting device that is used to switch and amplify electronic signals. The electric current flows between two electrodes, source and drain, and is controlled by an electric field applied to a third electrode, the gate.

Historical Background

The field-effect transistor principle was first patented in 1925 by Julius Edgar Lilienfeld, but it would take nearly another quarter of a century until the first working field-effect transistor (FET) based on a germanium crystal was built at Bell Laboratories in 1948 by William Shockley, John Bardeen, and Walter Brattain. Since its...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arias AC et al (2010) Materials and applications for large area electronics: solution-based approaches. Chem Rev 110:3–24

    CAS  Google Scholar 

  2. Hamilton R et al (2010) Development of polymer semiconductors for field-effect transistor devices in displays. In: Franky So (ed) Organic electronics: materials, processing, devices and applications, CRC Press, Boca Raton, Fl, p 393

    Google Scholar 

  3. Klauk H (2006) Organic electronics, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  4. Schroeder BC (2013) New thiophene based semiconducting materials for applications in plastic electronics. Department of Chemistry, Imperial College London, London

    Google Scholar 

  5. Skotheim A, Reynolds JR (2007) Handbook of conducting polymers, 3rd edn. CRC Press, Boca Raton/London

    Google Scholar 

  6. Chochos CL, Choulis SA (2011) How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Prog Polym Sci 36(10):1326–1414

    CAS  Google Scholar 

  7. Mei J et al (2013) Integrated materials design of organic semiconductors for field-effect transistors. J Am Chem Soc 135(18):6724–6746

    CAS  Google Scholar 

  8. Lei T, Wang J-Y, Pei J (2014) Roles of flexible chains in organic semiconducting materials. Chem Mater 26(1):594–603

    CAS  Google Scholar 

  9. Mei J, Bao Z (2014) Side chain engineering in solution-processable conjugated polymers for organic solar cells and field-effect transistors. Chem Mater 26(1):604–615

    CAS  Google Scholar 

  10. Peet J et al (2009) The role of processing in the fabrication and optimization of plastic solar cells. Adv Mater 21(14–15):1521–1527

    CAS  Google Scholar 

  11. McCulloch I et al. (2012) Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells. Acc Chem Res 45(5):714–722

    CAS  Google Scholar 

  12. Yu C-Y et al (2009) Thiophene/phenylene/thiophene-based low-bandgap conjugated polymers for efficient Near-infrared photovoltaic applications. Chem Mater 21(14):3262–3269

    CAS  Google Scholar 

  13. Nielsen CB, McCulloch I (2013) Recent advances in transistor performance of polythiophenes. Progress Polym Sci 38(12):2053–2069

    CAS  Google Scholar 

  14. Osaka I, McCullough RD (2008) Advances in molecular design and synthesis of regioregular polythiophenes. Acc Chem Res 41:1202–1214

    CAS  Google Scholar 

  15. Kline R et al (2005) Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38:3312–3319

    CAS  Google Scholar 

  16. Ong BS et al (2004) High-performance semiconducting polythiophenes for organic thin-film transistors. J Am Chem Soc 126(11):3378–3379

    CAS  Google Scholar 

  17. McCulloch I et al (2009) Semiconducting thienothiophene copolymers: design, synthesis, morphology, and performance in thin-Film organic transistors. Adv Mater 21:1091–1109

    CAS  Google Scholar 

  18. Zhang M et al (2007) Field-effect transistors based on a benzothiadiazole–cyclopentadithiophene copolymer. J Am Chem Soc 129(12):3472–3473

    CAS  Google Scholar 

  19. Wang S et al (2012) Organic field-effect transistors based on highly ordered single polymer fibers. Adv Mater 24(3):417–420

    CAS  Google Scholar 

  20. Zhang WM et al (2010) Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J Am Chem Soc 132(33):11437–11439

    CAS  Google Scholar 

  21. Nielsen CB, Turbiez M, McCulloch I (2013) Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv Mater 25(13):1859–1880

    CAS  Google Scholar 

  22. Li Y et al (2013) High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ Sci 6(6):1684–1710

    CAS  Google Scholar 

  23. Chen Z et al (2012) High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities. Adv Mater 24(5):647–652

    CAS  Google Scholar 

  24. Kronemeijer AJ et al (2012) A selenophene-based low-bandgap donor–acceptor polymer leading to fast ambipolar logic. Adv Mater 24(12):1558–1565

    CAS  Google Scholar 

  25. Bronstein H et al (2011) Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J Am Chem Soc 133:3272–3275

    CAS  Google Scholar 

  26. Anthony JE et al (2010) n-type organic semiconductors in organic electronics. Adv Mater 22:3879–3892

    Google Scholar 

  27. Zhan X et al (2011) Rylene and related diimides for organic electronics. Adv Mater 23(2):268–284

    CAS  Google Scholar 

  28. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686

    CAS  Google Scholar 

  29. Rivnay J et al (2010) Unconventional face-on texture and exceptional in-plane order of a high mobility n-type polymer. Adv Mater 22(39):4359–4363

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bob C. Schroeder or Iain McCulloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schroeder, B.C., McCulloch, I. (2015). Polymers for Transistors. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29648-2_13

Download citation

Publish with us

Policies and ethics