Skip to main content

Aging Skin Microbiology

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Our skin is colonized with large numbers of microbes and provides selective niches for various microbial communities. The analysis of 16S and/or 18S rRNA gene sequences revealed that, similar to the other parts of our body, the skin hosts highly diverse microbial communities that are not only site specific but also differ among different individuals. Furthermore, studies have also begun to bring to light the intimate relationships shared between host and resident microbes and to reveal the role of skin microbiota in skin health and diseases. Studies also show that as the skin ages, changes in skin physiology alter the associated microbiota, with implications for skin integrity and susceptibility to infection. In this chapter, the present understanding of the microbiota associated with human skin and its role in skin health and disease is described, and what is currently known about changes to such communities as the skin ages is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Evans CA. Persistent individual differences in the bacterial flora of the skin of the forehead: numbers of propionibacteria. J Invest Dermatol. 1975;64:42–6.

    Article  CAS  PubMed  Google Scholar 

  2. Chiller K, Selkin BA, Murakawa GJ. Skin microflora and bacterial infections of the skin. J Invest Dermatol. 2001;6:170–4.

    Article  CAS  Google Scholar 

  3. Gwaltney JM, Moskalski Jr PB, Hendley JO. Hand-to-hand transmission of rhinovirus colds. Ann Intern Med. 1978;88:463–7.

    Article  PubMed  Google Scholar 

  4. Christensen GJ, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benefic Microbes. 2014;5:201–15.

    Article  CAS  Google Scholar 

  5. Dong Y, Speer CP. The role of Staphylococcus epidermidis in neonatal sepsis: guarding angel or pathogenic devil? Int J Med Microbiol. 2014;304:513–20.

    Article  CAS  PubMed  Google Scholar 

  6. Collaborators, Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215–21.

    Google Scholar 

  7. Grice EA, Kong HH, Renaud G, et al. A diversity profile of the human skin microbiota. Genome Res. 2008;18:1043–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ursell LK, Clemente JC, Rideout JR, Gevers D, Caporaso JG, Knight R. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol. 2012;129:1204–8.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, NIH Intramural Sequencing Center Comparative Sequencing Program, Kong HH, Segre JA. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498:367–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Paulino LC, Tseng CH, Blaser MJ. Analysis of Malassezia microbiota in healthy superficial human skin and in psoriatic lesions by multiplex real-time PCR. FEMS Yeast Res. 2008;8:460–71.

    Article  CAS  PubMed  Google Scholar 

  13. Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL. The microbiome extends to subepidermal compartments of normal skin. Nat Commun. 2013;4:1431.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gao Z, Tseng CH, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A. 2007;104:2927–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A. 2008;105:17994–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N, Gordon JI, Knight R. Moving pictures of the human microbiome. Genome Biol. 2011;12:R 50.

    Article  Google Scholar 

  17. Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158:442–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Peacock SJ, de Silva I, Lowy FD. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 2001;9:605–10.

    Article  CAS  PubMed  Google Scholar 

  19. von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med. 2001;344:11–6.

    Article  Google Scholar 

  20. Mainous 3rd AG, Hueston WJ, Everett CJ, Diaz VA. Nasal carriage of Staphylococcus aureus and methicillin-resistant S aureus in the United States, 2001–2002. Ann Fam Med. 2006;4:132–7.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Goetghebeur M, Landry PA, Han D, Vicente C. Methicillin-resistant Staphylococcus aureus: a public health issue with economic consequences. Can J Infect Dis Med Microbiol. 2007;18:27–34.

    PubMed Central  PubMed  Google Scholar 

  22. Aligholi M, Emaneini M, Jabalameli F, Shahsavan S, Dabiri H, Sedaght H. Emergence of high-level vancomycin-resistant Staphylococcus aureus in the Imam Khomeini Hospital in Tehran. Med Princ Pract. 2008;17:432–4.

    Article  PubMed  Google Scholar 

  23. Oliveira GA, Dell’Aquila AM, Masiero RL, et al. Isolation in Brazil of nosocomial Staphylococcus aureus with reduced susceptibility to vancomycin. Infect Control Hosp Epidemiol. 2001;22:443–8.

    Article  CAS  PubMed  Google Scholar 

  24. Tiwari HK, Sen MR. Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect Dis. 2006;6:156.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Dekio I, Sakamoto M, Hayashi H, Amagai M, Suematsu M, Benno Y. Characterization of skin microbiota in patients with atopic dermatitis and in normal subjects using 16S rRNA gene-based comprehensive analysis. J Med Microbiol. 2007;56:1675–83.

    Article  CAS  PubMed  Google Scholar 

  26. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature (London). 2010;465:346–9.

    Article  CAS  Google Scholar 

  27. Vengadesan K, Macon K, Sugumoto S, Mizunoe Y, Iwase T, Narayana SVL. Purification, crystallization and preliminary X-ray diffraction analysis of the Staphylococcus epidermidis extracellular serine protease Esp. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013;69:49–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cogen AL, Yamasaki K, Muto J, Sanchez KM, Crotty Alexander L, Tanios J, Lai Y, Kim JE, Nizet V, Gallo RL. Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PLoS One. 2010;5(1):e8557.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Bierbaum G, Gotz F, Peschel A, et al. The biosynthesis of the lantibiotics epidermin, gallidermin, Pep5 and epilancin K7. Antonie Van Leeuwenhoek. 1996;69:119–27.

    Article  CAS  PubMed  Google Scholar 

  30. Ekkelenkamp MB, Hanssen M, Danny Hsu ST, et al. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis. FEBS Lett. 2005;579:1917–22.

    Article  CAS  PubMed  Google Scholar 

  31. Sahl HG. Staphylococcin 1580 is identical to the lantibiotic epidermin: implications for the nature of bacteriocins from Gram-positive bacteria. Appl Environ Microbiol. 1994;60:752–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Otto M. Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides. 2001;22:1603–8.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Kuo S, Shu M, Yu J, Huang S, Dai A, Two A, Gallo RL, Huang C-M. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol. 2014;98:411–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Dongqing L, Hu L, Zhiheng L, Hongquan L, Yue W, Yuping L. A novel lipopeptide from skin commensal activates TLR2/CD36-p38 MAPK signaling to increase antibacterial defense against bacterial infection. PLoS One. 2013;8(3):e58288.

    Article  Google Scholar 

  35. Wanke I, Steffen H, Christ C, Krismer B, Gotz F, Peschel A, et al. Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J Invest Dermatol. 2011;131:382–90.

    Article  CAS  PubMed  Google Scholar 

  36. Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, Conlan S, Himmelfarb S, Byrd AL, Deming C, Quinones M, Brenchley JM, Kong HH, Tussiwand R, Murphy KM, Merad M, Segre JA, Belkaid Y. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520:104–8.

    Article  CAS  PubMed  Google Scholar 

  37. Nakamizo S, Egawa G, Honda T, Nakajima S, Belkaid Y, Kabashima K. Commensal bacteria and cutaneous immunity. Semin Immunopathol. 2015;37:73–80.

    Article  CAS  PubMed  Google Scholar 

  38. Tomic-Canic M, Mamber SW, Stojadinovic O, Lee B, Radoja N, McMichael J. Streptolysin O enhances keratinocyte migration and proliferation and promotes skin organ culture wound healing in vitro. Wound Repair Regen. 2007;15:71–9.

    Article  PubMed  Google Scholar 

  39. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu ZR, Hooper LV, Schmidt RR, von Aulock S, Radek KA, Huang CM, Ryan AF, Gallo RL. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15:1377–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S, Hall JA, Dzutsev A, Kong H, Campbell DJ, Trinchieri G, Segre JA, Belkaid Y. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337:1115–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Weyrich LS, Dixit S, Farrer AG, Cooper AJ, Cooper AJ. The skin microbiome: associations between altered microbial communities and disease. Australas J Dermatol. 2015 PubMed 25715969.

    Google Scholar 

  42. SanMiguel A, Grice EA. Interactions between host factors and the skin microbiome. Cell Mol Life Sci. 2015;72:1499–515.

    Article  CAS  PubMed  Google Scholar 

  43. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346:954–9.

    Article  CAS  PubMed  Google Scholar 

  44. Grice EA. The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Semin Cutan Med Surg. 2014;33:98–103.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease. Semin Immunol. 2013;25:370–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Elston DM. Epidemiology and prevention of skin and soft tissue infections. Cutis. 2004;73:3–7.

    PubMed  Google Scholar 

  47. Redziniak DE, Diduch DR, Turman K, et al. Methicillin-resistant Staphylococcus aureus (MRSA) in the Athlete. Int J Sports Med. 2009;30(8):557–62.

    Article  CAS  PubMed  Google Scholar 

  48. O’Gara JP, Humphreys H. Staphylococcus epidermidis biofilms: importance and implications. J Med Microbiol. 2001;50:582–7.

    Article  PubMed  Google Scholar 

  49. Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369:1961–71.

    Article  PubMed  Google Scholar 

  50. Lomholt HB, Kilian M. Population genetic analysis of Propionibacterium acnes identifies a subpopulation and epidemic clones associated with acne. PLoS One. 2010;5:e12277.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Yu Y, Champer J, Garbán H, Kim J. Typing of Propionibacterium acnes: a review of methods and comparative analysis. Br J Dermatol. 2015;172:1204–9.

    Article  CAS  PubMed  Google Scholar 

  52. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, NISC Comparative Sequence Program, Murray PR, Turner ML, Segre JA. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Sanchez DA, Nosanchuk JD, Friedman AJ. The skin microbiome: is there a role in pathogenesis of atopic dermatitis and psoriasis? J Drugs Dermatol. 2015;14(2):127–30.

    PubMed  Google Scholar 

  54. Salava A, Lauerma A. Role of the skin microbiome in atopic dermatitis. Clin Transl Allergy. 2014;4:33.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Harada K, Saito M, Sugita T, Tsuboi R. Malassezia species and their associated skin diseases. J Dermatol. 2015;42:250–7.

    Article  PubMed  Google Scholar 

  56. Brodská P, Panzner P, Pizinger K, Schmid-Grendelmeier P. IgE-mediated sensitization to malassezia in atopic dermatitis: more common in male patients and in head and neck type. Dermatitis. 2014;25:120–6.

    Article  PubMed  Google Scholar 

  57. Selander C, Zargari A, Mollby R, Rasool O, Scheynius A. Higher pH level, corresponding to that on the skin of patients with atopic eczema, stimulates the release of Malassezia sympodialis allergens. Allergy. 2006;61:1002–8.

    Article  CAS  PubMed  Google Scholar 

  58. Sugita T, Tajima M, Amaya M, Tsuboi R, Nishikawa A. Genotype analysis of Malassezia restricta as the major cutaneous flora in patients with atopic dermatitis and healthy subjects. Microbiol Immunol. 2004;48:755–9.

    Article  CAS  PubMed  Google Scholar 

  59. Tajima M, Sugita T, Nishikawa A, Tsuboi R. Molecular analysis of Malassezia microflora in seborrheic dermatitis patients: comparison with other diseases and healthy subjects. J Invest Dermatol. 2008;128:345–51.

    CAS  PubMed  Google Scholar 

  60. Takemoto A, Cho O, Morohoshi Y, Sugita T, Muto M. Molecular characterization of the skin fungal microbiome in patients with psoriasis. J Dermatol. 2015;42:166–70.

    Article  CAS  PubMed  Google Scholar 

  61. Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3:e2719.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Aiello AE, Cimiotti J, Della-Latta P, Larson EL. A comparison of the bacteria found on the hands of ‘homemakers’ and neonatal intensive care unit nurses. J Hosp Infect. 2003;54:310–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Larson EL, Gomez-Duarte C, Lee LV, Della-Latta P, Kain DJ, Keswick BH. Microbial flora of hands of homemakers. Am J Infect Control. 2003;31:72–9.

    Article  PubMed  Google Scholar 

  64. Bloomfield SF, Aiello AE, Cookson B, O’Boyle C, Larson EL. The effectiveness of hand hygiene procedures in reducing the risks of infections in home and community settings including handwashing and alcohol-based hand sanitizer. Am J Infect Control. 2007;35(10 Suppl 1):S27–64.

    Article  Google Scholar 

  65. Hadaway LC. Skin flora and infection. J Infus Nurs. 2003;26:44–8.

    Article  PubMed  Google Scholar 

  66. Larson E. Skin hygiene and infection prevention: more of the same or different approaches? Clin Infect Dis. 1999;29:1287–94.

    Article  CAS  PubMed  Google Scholar 

  67. Heintz C, Mair W. You are what you host: microbiome modulation of the aging process. Cell. 2014;156:408–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc. 2015;63:776–81.

    Article  PubMed  Google Scholar 

  69. Stamatas GN, Nikolovski J, Luedtke MA, Kollias N, Wiegand BC. Infant skin microstructure assessed in vivo differs from adult skin in organization and at the cellular level. Pediatr Dermatol. 2010;27:125–31.

    Article  PubMed  Google Scholar 

  70. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–5.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin microbiome early in life. J Invest Dermatol. 2011;131:2026–32.

    Google Scholar 

  72. Nobel WC. Microbiology of human skin. 2nd ed. London: Lloyd Luke Medical Books; 1981.

    Google Scholar 

  73. Bernier V, Weill FX, Hirigoyen V, et al. Skin colonization by Malassezia species in neonates: a prospective study and relationship with neonatal cephalic pustulosis. Arch Dermatol. 2002;138:215–8.

    Article  PubMed  Google Scholar 

  74. Venkatesh MP, Placencia F, Weisman LE. Coagulase-negative staphylococcal infections in the neonate and child: an update. Semin Pediatr Infect Dis. 2006;17:120–7.

    Article  PubMed  Google Scholar 

  75. Juncosa Morros T, Gonzalez-Cuevas A, Alayeto Ortega J, et al. Cutaneous colonization by Malassezia spp. in neonates. An Esp Pediatr. 2002;57:452–6.

    Article  CAS  PubMed  Google Scholar 

  76. Leyden JJ, McGinley KJ, Mills OH, Kligman AM. Age-related changes in the resident bacterial flora of the human face. J Invest Dermatol. 1975;65:379–81.

    Article  CAS  PubMed  Google Scholar 

  77. Klinger G, Eick S, Klinger G, et al. Influence of hormonal contraceptives on microbial flora of gingival sulcus. Contraception. 1998;57:381–4.

    Article  CAS  PubMed  Google Scholar 

  78. Oh J, Conlan S, Polley EC, Segre JA, Kong HH. Shifts in human skin and nares microbiota of healthy children and adults. Genome Med. 2012;10:4–77.

    Google Scholar 

  79. Klein NC, Cunha BA. Skin and soft tissue infections. In: Yoshikawa TT, Norman DC, editors. Infectious disease in the aging. Totowa: Human Press; 2001. p. 139–45.

    Chapter  Google Scholar 

  80. Lertzman BH, Gaspari AA. Drug treatment of skin and soft tissue infections in elderly long-term care residents. Drugs Aging. 1996;9:109–21.

    Article  CAS  PubMed  Google Scholar 

  81. Somerville DA. The normal flora of the skin in different age groups. Br J Dermatol. 1969;81:248–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane L. Charbonneau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Charbonneau, D.L., Song, Y., Liu, C. (2015). Aging Skin Microbiology. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_83-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_83-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics