Skip to main content

Bioengineering Methods and Skin Aging

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

During the last decade, skin aging has become an area of increasing research interest, because of the prolongation of life span in modern society.

Skin aging is an uneven process characterized by epidermal and dermal disorders, accompanied by many clinical signs, such as skin dryness, color changes, loss of elasticity, wrinkles, and risk of developing skin cancers. The elderly appearance of the skin depends on a combination of intrinsic or chronological aging, modulated by genetically predisposing factors, and extrinsic aging or photoaging, due to environmental factors, mainly UV exposure, and also wind, relative humidity, pollution, and so on. The effects of the UV radiations on sun-exposed sites are superimposed on the morphological, biochemical, and functional changes occurring with aging, making distinction between the two phenomena hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fluhr JW, Pfistener S, Gloor M. Direct comparison of skin physiology in children and adults with bioengineering methods. Pediatr Dermatol. 2000;17:436–9.

    Article  CAS  PubMed  Google Scholar 

  2. Diktein S, Hartzshtark A, Bercovici P. The dependence of low pressure indentation, slackness, and surface pH on age in forehead skin of women. J Soc Cosmet Chem. 1984;35:221–8.

    Google Scholar 

  3. Waller JM, Maibach HI. Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol. 2005;11:221–35.

    Article  PubMed  Google Scholar 

  4. Wilhelm KP, Cua AB, Maibach HI. Skin aging: effect on transepidermal water loss, stratum corneum hydration, skin surface pH and casual sebum content. Arch Dermatol. 1991;127:1806–9.

    Article  CAS  PubMed  Google Scholar 

  5. Conti A, Schiavi ME, Seidenari S. Capacitance, transepidermal water loss and casual level of sebum in healthy subjects in relation to site, sex and age. Int J Cosmet Sci. 1995;17:77–85.

    Article  CAS  PubMed  Google Scholar 

  6. Callens A et al. Does hormonal aging exist? A study on the influence of different hormone therapy on the skin of postmenopaused women using non-invasive measurement techniques. Dermatology. 1996;193:289–94.

    Article  CAS  PubMed  Google Scholar 

  7. Caisey L et al. Influence of age and hormone replacement therapy on the functional properties of the lips. Skin Res Technol. 2008;14:220–5.

    Article  PubMed  Google Scholar 

  8. Richard S, de Rigal J, Lacharriere O, Berardesca E, Leveque JL. Noninvasive measurement of the effect of lifetime exposure to the sun on the aged skin. Photodermatol Photoimmunol Photomed. 1994;10:164–9.

    CAS  PubMed  Google Scholar 

  9. Warren R. Age, sunlight, and facial skin: a histologic and quantitative study. J Am Acad Dermatol. 1991;25:751–60.

    Article  CAS  PubMed  Google Scholar 

  10. Kikuchi-Numagami K et al. Functional and morphological studies of photodamaged skin on the hands of middle-aged Japanese golfers. Eur J Dermatol. 2000;10(4):277–81.

    CAS  PubMed  Google Scholar 

  11. Guinot C et al. Effect of hormonal replacement therapy on cutaneous biophysical properties of menopausal women. Ann Dermatol Venereol. 2002;129:1129–33.

    CAS  PubMed  Google Scholar 

  12. Marks R, Edwards C. The measurement of photodamage. Br J Dermatol. 1992;127(41):7–13.

    Article  PubMed  Google Scholar 

  13. Kelly RI et al. The effects of aging on cutaneous microvasculature. J Am Acad Dermatol. 1995;33:749–56.

    Article  CAS  PubMed  Google Scholar 

  14. Tolino MA, Wilkin JK. Aging and cutaneous vascular thermoregulation responses. J Invest Dermatol. 1988;90:613.

    Google Scholar 

  15. Ishihara M et al. Blood flow. In: Kligman AM, Takase Y, editors. Cutaneous aging. Tokyo: University of Tokyo press; 1988. p. 167–81.

    Google Scholar 

  16. Hatzis J. The wrinkle and its measurement-a skin surface profilometric method. Micron. 2004;35:210–9.

    Article  Google Scholar 

  17. Quan MB, Edwards C, Marks R. Non-invasive in vivo techniques to differentiate photodamage and ageing in human skin. Acta Dermatol Venereol. 1997;77(6):416–9.

    CAS  Google Scholar 

  18. Lee HK, Seo YK, Baek JH, Koh JS. Comparison between ultrasonography (Dermascan C version 3) and transparency profilometry (Skin Visiometer SV600). Skin Res Technol. 2008;14:8–12.

    CAS  PubMed  Google Scholar 

  19. de Rigal J et al. Assessment of aging of the human skin by in vivo ultrasonic imaging. J Invest Dermatol. 1989;93:621–5.

    Article  PubMed  Google Scholar 

  20. Seidenari S, Pagnoni A, Di Nardo A, Giannetti A. Echographic evaluation with image analysis of normal skin: variation according to age and sex. Skin Pharmacol. 1995;7:201–9.

    Article  Google Scholar 

  21. Tan CY, Stathan B, Marks R, Payne PA. Skin thickness measurement by pulsed ultrasound: its reproducibility, validation and variability. Br J Dermatol. 1982;106:657–67.

    CAS  PubMed  Google Scholar 

  22. Escoffier C et al. Age-related mechanical properties of human skin: an in vivo study. J Invest Dermatol. 1989;93:353–7.

    Article  CAS  PubMed  Google Scholar 

  23. Denda M, Takahasi M. Measurement of facial skin thickness by ultrasound method. J Soc Cosmet Chem Jpn. 1990;23:316–9.

    Article  Google Scholar 

  24. Takema Y, Yorimoto Y, Kawai M, Imokawa G. Age-related changes in the elastic properties and thickness of human facial skin. Br J Dermatol. 1994;131:641–8.

    Article  CAS  PubMed  Google Scholar 

  25. Lasagni C, Seidenari S. Echographic assessment of age-dependent variations of skin thickness. A study on 162 subjects. Skin Res Technol. 1995;1:81–5.

    Article  Google Scholar 

  26. Gniadecka M, Jemec GBE. Quantitative evaluation of chronological ageing and photoageing in vivo: studies on skin echogenicity and thickness. Br J Dermatol. 1998;139:815–21.

    Article  CAS  PubMed  Google Scholar 

  27. Pellacani G, Seidenari S. Variations in facial skin thickness and echogenicity with site and age. Acta Dermatol Venereol. 1999;79:366–9.

    Article  CAS  Google Scholar 

  28. Leveque JL et al. Influence of chronic sun exposure on some biophysical parameters of the human skin: an in vivo study. J Cutan Aging Cosmet Dermatol. 1989;1:123–7.

    Google Scholar 

  29. Adhoute H, de Rigal J, Marchand JP, Privat Y, Leveque JL. Influence of age and sun exposure on the biophysical properties of the human skin: an in vivo study. Photodermatol Photoimmunol Photomed. 1992;9:99–103.

    CAS  PubMed  Google Scholar 

  30. Nishimura M, Tuji T. Measurement of skin elasticity with a new suction device. Jpn J Dermatol. 1990;102:1111–7.

    Google Scholar 

  31. Shuster S, Black MM, McVitie E. The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol. 1975;93:639.

    Article  CAS  PubMed  Google Scholar 

  32. Pellacani G, Giusti F, Seidenari S. Ultrasound assessment of skin ageing. In: Serup J, Jemec GBE, Grove GL, editors. Non-invasive methods and the skin. Boca Raton: CRC press; 2006. p. 511–4.

    Chapter  Google Scholar 

  33. Altmeyer P, Hoffmann K, Stucker M, Goertz S, El-Gammal S. General phenomena of ultrasound in dermatology. In: Altmeyer P, El-Gammal S, Hoffmann K, editors. Ultrasound in dermatology. Berlin/Heidelberg: Springer; 1992. p. 55–79.

    Google Scholar 

  34. Gniadecka M, Serup J, Sondergaard J. Age-related diurnal changes of dermal oedema: evaluation by high frequency ultrasound. Br J Dermatol. 1994;131:849–55.

    Article  CAS  PubMed  Google Scholar 

  35. Tsukahara K et al. Age-related alterations of echogenicity in Japanese skin. Dermatology. 2000;200:303–7.

    Article  CAS  PubMed  Google Scholar 

  36. Hoffmann K, Dirschka T, El-Gammal S, Altmeyer P. Assessment of actinic elastosis by means of high-frequency sonography. In: Marks R, Plewing G, editors. The Environmental Threat to the Skin. London: Martin Dunitz; 1991. p. 83–90.

    Google Scholar 

  37. Richard S et al. Characterization of the skin in vivo by high resolution magnetic resonance imaging: water behaviour and age-related effects. J Invest Dermatol. 1993;100:705–9.

    Article  CAS  PubMed  Google Scholar 

  38. Oikarinen A. Aging of the skin connective tissue: how to measure the biochemical and mechanical properties of aging dermis. Photodermatol Photoimmunol Photomed. 1994;10:47–52.

    CAS  PubMed  Google Scholar 

  39. Sandby-Moller J, Wulf HC. Ultrasonographic subepidermal low-echogenic band, dependence of age and body site. Skin Res Technol. 2004;10:57–63.

    Article  PubMed  Google Scholar 

  40. Gniadecka M. Effects of ageing on dermal echogenicity. Skin Res Technol. 2001;7:204–7.

    Article  CAS  PubMed  Google Scholar 

  41. Nakahigashi N, Sugai T. Assessment of degeneration by sun exposure using ultrasonic imaging with dermascan C. Skin Res. 1996;38:25–30.

    Google Scholar 

  42. Seidenari S, Giusti G, Bertoni L, Magnoni C, Pellacani G. Thickness and echogenicity of the skin in children as assessed by 20-MHz ultrasound. Dermatology. 2000;201:218–22.

    Article  CAS  PubMed  Google Scholar 

  43. Rajadhyaksha M, Gonzalez S, Avislan JM, Anderson RR, Webb RH. In vivo confocal laser scanning microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol. 1999;113:292–303.

    Google Scholar 

  44. Branzan AL, Landthaler M, Szeimies RM. In vivo confocal laser scanning microscopy in dermatology. Lasers Med Sci. 2007;22:73–82.

    Article  PubMed  Google Scholar 

  45. Sauermann K et al. Age-related changes in human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo. Skin Res Technol. 2002;8:52–6.

    Article  PubMed  Google Scholar 

  46. Sauermann K, Jaspers S, Koop U, Wenck H. Topically applied vitamin C increases the density of dermal papillae in aged human skin. Dermatology. 2004;4:13–8.

    PubMed  PubMed Central  Google Scholar 

  47. Neerken S, Lucassen GW, Bisschop MA, Lenderink E, Nuijs TA. Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Opt. 2004;9:274–81.

    Article  PubMed  Google Scholar 

  48. Bernstein EF et al. Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by northern analysis, immunohistochemical staining and confocal 3laser scanning microscopy. J Am Acad Dermatol. 1996;34:209–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Giusti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Giusti, F., Seidenari, S. (2015). Bioengineering Methods and Skin Aging. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_65-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_65-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics