Skip to main content

Aging-Associated Nonmelanoma Skin Cancer: A Role for the Dermis

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

The cocktail of sun’s ultraviolet (UVB) rays, and the hands of father time, can significantly increase the risk of skin cancers. However, genetic predisposition, certain skin diseases, and some viral infections can also increase the risk of skin cancers. Nonmelanoma skin cancer (NMSC), including basal cell (BCC) and squamous cell carcinoma (SCC), is thought to be based on a life time exposure to risk factors such as UV radiation combined with little sun protection in that life time. In fact, over 80 % of all skin cancers are found in people over the age of 60. NMSC tends to occur on highly visible areas such as the head, face, and neck. The treatment of these NMSC represents both a significant economic burden to health services and can cause significant morbidity especially as these occur on highly visible areas. Treatment is often invasive surgery which often leads to scaring and affects quality of life. Other treatments are based on chemotherapeutic, immunotherapies that can also affect quality of life. While very effective standard treatments have been developed to treat NMSC, very little is understood about the underlying cellular causes, and as such, alternative methods of treatment have not readily been developed. In this chapter, we explore the mechanisms of UVB-induced effects on skin and exciting new possible methods to treat NMSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. ACS Cancer Facts and Figures 2015.

    Google Scholar 

  2. Karia PS, Han J, Schmults CD. Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012. J Am Acad Dermatol. 2013;68:957–66.

    Article  PubMed  Google Scholar 

  3. Kripke ML. Carcinogenesis: ultraviolet radiation. In: Fitzpatrick TB, Eisen AZ, Wolff K, Freedberg IM, Austen KF, editors. Dermatology in general medicine. New York: McGraw-Hill; 1993. p. 797–804.

    Google Scholar 

  4. Tyrrell RM. The molecular and cellular pathology of solar ultraviolet radiation. Mol Aspects Med. 1994;15:1–77.

    Article  CAS  PubMed  Google Scholar 

  5. Clingen PH, Arlett CF, Roza L, Mori T, Nikaido O, Green MHL. Induction of cyclobutane pyrimidine dimers, pyrimidine(6-4) pyrimidone photoproducts, and Dewar valence isomers by natural sunlight in normal human mononuclear cells. Cancer Res. 1995;55:2245–8.

    CAS  PubMed  Google Scholar 

  6. Wikonkal NM, Brash DE. Ultraviolet radiation induced signature mutations in photocarcinogenesis. J Investig Dermatol Symp Proc. 1999;4:6–10.

    Article  CAS  PubMed  Google Scholar 

  7. Brash DE, Heffernan T, Nghiem P. Carcinogenesis: ultraviolet radiation. In: Wolff K, editor. Fitzpatrick’s dermatology in general medicine. 6th ed. New York: McGraw-Hill Professional; 2003.

    Google Scholar 

  8. Kraemer KH. Sunlight and skin cancer: another link revealed. Proc Natl Acad Sci U S A. 1997;94:11–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuhn C, Kumar M, Hurwitz SA, Cotton J, Spandau DF. Activation of the insulin-like growth factor-1 receptor promotes the survival of human keratinocytes following ultraviolet B irradiation. Int J Cancer. 1999;80:431–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lewis DA, Spandau DF. UVB-induced activation of NF-κB is regulated by the IGF-1R and dependent on p38 MAPK. J Invest Dermatol. 2008;128:1022–9.

    Article  CAS  PubMed  Google Scholar 

  11. Lewis DA, Yi Q, Travers JB, Spandau DF. UVB-induced senescence in human keratinocytes requires a functional IGF-1R and p53. Mol Biol Cell. 2008;19:1346–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lewis DA, Travers JB, Spandau DF. A new paradigm for the role of aging in the development of skin cancer. J Invest Dermatol. 2008;129:787–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Barreca A, De Luca M, Del Monte P, Bondanza S, Damonte G, Cariola G, et al. In vitro paracrine regulation of human keratinocyte growth by fibroblast derived insulin-like growth factors. J Cell Physiol. 1992;151:262–8.

    Article  CAS  PubMed  Google Scholar 

  14. Tavakkol A, Elder JT, Griffiths CE, Cooper KD, Talwar H, Fisher GJ, et al. Expression of growth hormone receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor mRNA and proteins in human skin. J Invest Dermatol. 1992;99:343–9.

    Article  CAS  PubMed  Google Scholar 

  15. Campisi J. Aging and cancer cell biology, 2008. Aging Cell. 2008;7:281–4.

    Article  CAS  PubMed  Google Scholar 

  16. Vasto S, Carruba G, Lio D, Colonna-Romano G, Di Bona D, Candore G, Caruso C. Inflammation, ageing and cancer. Mech Ageing Dev. 2009;130:40–5.

    Article  CAS  PubMed  Google Scholar 

  17. Anisimov VN. Carcinogenesis and aging 20 years after. Escaping horizon. Mech Ageing Dev. 2009;130:105–21.

    Article  CAS  PubMed  Google Scholar 

  18. Moriwaki S, Ray S, Tarone RE, Kraemer KH, Grossman L. The effect of donor age on the processing of UV-damaged DNA by cultured human cells: reduced DNA repair capacity and increased DNA mutability. Mutat Res. 1996;364:117–23.

    Article  PubMed  Google Scholar 

  19. Ouhtit A, Ueda M, Nakazawa M, Dumaz N, Sarasin A, Yamasaki H. Quantitative detection of ultraviolet-specific p53 mutations in normal skin from Japanese patients. Cancer Epidemiol Biomarkers Prev. 1997;6:433–8.

    CAS  PubMed  Google Scholar 

  20. Krtolica A, Parrinello S, Lockett S, Desprez P-Y, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001;98:12072–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parrinello S, Coppe J-P, Krtolica A, Campisi J. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci. 2005;118:485–96.

    Article  CAS  PubMed  Google Scholar 

  22. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–22.

    Article  CAS  PubMed  Google Scholar 

  23. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics. CA Cancer J Clin. 2004;54:8–29.

    Article  PubMed  Google Scholar 

  24. Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet. 2002;31:199–209.

    Article  CAS  Google Scholar 

  25. Mullenders LHF, Van Hoffen A, Vreeswijk MP, Gruven HJ, Vrieling H, van Zeeland AA. Ultraviolet-induced photolesions: repair and mutagenesis. Recent Results Cancer Res. 1997;143:89–99.

    Article  CAS  PubMed  Google Scholar 

  26. Yuspa SH, Dlugosz AA. Cutaneous carinogenesis: natural and experimental. In: Goldsmith LA, editor. Physiology, biochemistry and molecular biology of the skin. New York: Oxford University Press; 1991. p. 1365–402.

    Google Scholar 

  27. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.

    Article  CAS  PubMed  Google Scholar 

  28. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Stillman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JKV, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–74.

    Article  PubMed  CAS  Google Scholar 

  29. Campisi J. Suppressing cancer: the importance of being senescent. Science. 2005;309:886–7.

    Article  CAS  PubMed  Google Scholar 

  30. Dimri GP. What has senescence got to do with cancer? Cancer Cell. 2005;7:505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, Levine AJ. Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci U S A. 2007;104:16633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melnikova VO, Ananthaswamy HN. Cellular and molecular events leading to the development of skin cancer. Mutat Res. 2005;571:91–106.

    Article  CAS  PubMed  Google Scholar 

  33. Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, et al. UV-induced skin damage. Toxicology. 2003;189:21–37.

    Article  CAS  PubMed  Google Scholar 

  34. Nishigori C. Cellular aspects of photocarcinogenesis. Photochem Photobiol Sci. 2006;5:208–14.

    Article  CAS  PubMed  Google Scholar 

  35. Mathon NF, Lloyd AC. Cell senescence and cancer. Nat Rev Cancer. 2001;1:203–13.

    Article  CAS  PubMed  Google Scholar 

  36. Krtolica A, Campisi J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol. 2002;34:1401–14.

    Article  CAS  PubMed  Google Scholar 

  37. Campisi J. Cancer and ageing: rival demons? Nat Rev Cancer. 2003;3:339–49.

    Article  CAS  PubMed  Google Scholar 

  38. Matsumura Y, Ananthaswammy HN. Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol. 2004;195:298–308.

    Article  CAS  PubMed  Google Scholar 

  39. Ramos J, Villa J, Ruiz A, Armstrong R, Matta A. UV dose determines key characteristics of non-melanoma skin cancer. Cancer Epidemiol Biomarkers Prev. 2004;13:2006–11.

    CAS  PubMed  Google Scholar 

  40. Brash DE. Roles of the transcription factor p53 keratinocyte carcinomas. Br J Dermatol. 2006;154:8–10.

    Article  CAS  PubMed  Google Scholar 

  41. Benjamin CL, Anathaswamy HN. p53 and the pathogenesis of skin cancer. Toxicol Appl Pharmacol. 2007;224:241–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jonason AS, Kunala S, Price GJ, Restifo RJ, Spinelli HM, Persing JA, et al. Frequent clones of p53 -mutated in keratinocytes in normal skin. Proc Natl Acad Sci U S A. 1996;93:14025–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodier F, Campisi J, Bhaumik D. Two faces of p53: aging and tumor suppression. Nucleic Acids Res. 2007;35:7475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Halliday GM, Rana S. Wave band and dose dependency of sunlightinduced immunomodulation and cellular changes. Photochem Photobiol. 2008;84:35–46.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Q, Yao Y, Konger RL, Sinn A, Cai S, Pollok KE, Travers JB. Platelet-activating factor mediates ultraviolet B radiation-mediated inhibition of delayed-type contact hypersensitivity reactions. J Invest Dermatol. 2008;128:1780–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aubin F. Mechanisms involved in ultraviolet light-induced immunesuppression. Eur J Dermatol. 2003;13:515–23.

    CAS  PubMed  Google Scholar 

  47. Schwartz T. Photoimmunosupression. Photodermatol Photoimmunol Photomed. 2002;18:141–5.

    Article  Google Scholar 

  48. Marathe GK, Johnson C, Billings SD, Southall MD, Pei Y, Spandau DF, Murphy RC, Zimmerman GA, McIntyre TM, Travers JB. Ultraviolet B radiation generates platelet-activating factor-like phospholipids underlying cutaneous damage. J Biol Chem. 2005;280:35448–57.

    Article  CAS  PubMed  Google Scholar 

  49. Halliday GM. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res. 2005;571:107–20.

    Article  CAS  PubMed  Google Scholar 

  50. Chung JH, Hanft VN, Kang S. Aging and photoaging. J Am Acad Dermatol. 2003;49:690–7.

    Article  PubMed  Google Scholar 

  51. Cooper SJ, Bowen GT. Ultraviolet B regulation of transcription factor families: role of the nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) in UVB-induced skin carcinogenesis. Curr Cancer Drug Targets. 2007;7:325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Madson JG, Hansen LA. Multiple mechanisms of erbB2 action after ultraviolet irradiation of the skin. Mol Carcinog. 2007;46:624–8.

    Article  CAS  PubMed  Google Scholar 

  53. Gallagher RP, Hill GB, Bajdik CD, Fincham S, Coldman AJ, McLean DI, Threlfall WJ. Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer I. Basal cell carcinoma. Arch Dermatol. 1995;131:157–63.

    Article  CAS  PubMed  Google Scholar 

  54. MacKie RM. Long-term health risk to the skin of ultraviolet radiation. Prog Biophys Mol Biol. 2006;92:92–6.

    Article  PubMed  Google Scholar 

  55. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126:2565–75.

    Article  CAS  PubMed  Google Scholar 

  56. Chen J-H, Hales N, Ozanne SE. DNA damage, cellular senescence and organismal ageing: causal or correlative. Nucleic Acids Res. 2007;35:7417–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bertram C, Hass R. Cellular responses to ROS-induced DNA damage and aging. Biol Chem. 2008;389:211–20.

    Article  CAS  PubMed  Google Scholar 

  58. Burhans WC, Weinberger M. DNA replication stress, genome instability and aging. Nucleic Acids Res. 2007;35:7545–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamada M, Udono M, Hori M, Hirose R, Sato S, Mori T, et al. Aged human skin removes UVB-induced pryimidine dimers from the epidermis more slowly than younger adult skin in vivo. Arch Dermatol Res. 2006;297:294–302.

    Article  PubMed  Google Scholar 

  60. Kenyon J, Gerson SL. The role of DNA damage repair in aging of adult stem cells. Nucleic Acids Res. 2007;35:7557–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sunderkotter C, Kalden H, Luger TA. Aging and the skin immune system. Arch Dermatol. 1997;133:1256–62.

    Article  CAS  PubMed  Google Scholar 

  62. Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol. 2007;211:144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Witkowski JM, Soroczynska-Cybula M, Bryl E, Smolenska Z, Jozwik A. Klotho-a common link in physiological and rheumatoid arthritis related aging of human CD4 lymphocytes. J Immunol. 2007;178:771–7.

    Article  CAS  PubMed  Google Scholar 

  64. Hayflick L, Moorhead P. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:385–621.

    Article  Google Scholar 

  65. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.

    Article  CAS  PubMed  Google Scholar 

  66. Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol. 2005;2005(37):961–76.

    Article  CAS  Google Scholar 

  67. Blackburn EH. Telomeres and telomerase: their mechanisms of action and the effects of altering their function. FEBS Lett. 2005;579:859–62.

    Article  CAS  PubMed  Google Scholar 

  68. Herbig U, Jobling WA, Chen BPC, Chen DJ, Sedivy JM. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53 and p21CIP1 but not p16INK4a. Mol Cell. 2004;14:501–13.

    Article  CAS  PubMed  Google Scholar 

  69. Dimiri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarkers that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–7.

    Article  Google Scholar 

  70. Herbig U, Ferreira M, Carey D, Sedivy JM. Cellular senescence in aging primates. Science. 2006;311:1257.

    Article  CAS  PubMed  Google Scholar 

  71. Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev. 2007;128:36–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lewis DA, Travers JB, Machado C, Somani AK, Spandau DF. Reversing the aging stromal phenotype prevents carcinoma initiation. Aging. 2011;3:407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution. 1957;11:398–411.

    Article  Google Scholar 

  74. Hornsby PJ. Senescence as an anticancer mechanism. J Clin Oncol. 2007;14:1852–7.

    Article  CAS  Google Scholar 

  75. Dilley T, Bowden G, Chen Q. Novel mechanisms of sublethal oxidant toxicity: induction of premature senescence in human fibroblasts confer tumor promoter activity. Exp Cell Res. 2003;290:38–48.

    Article  CAS  PubMed  Google Scholar 

  76. Collado M, Blasco MA, Serrao M. Cellular senescence in cancer and aging. Cell. 2007;130:223–31.

    Article  CAS  PubMed  Google Scholar 

  77. Sorrell JM, Baber MA, Caplan AI. Site-matched papillary and reticular human dermal fibroblasts differ in their release of specific growth factors/cytokines and in their interaction with keratinocytes. J Cell Physiol. 2004;200:134–45.

    Article  CAS  PubMed  Google Scholar 

  78. El-Ghalbzouri A, Gibbs S, Lamme E, Van Blitterswijk CA, Ponec M. Effect of fibroblasts on epidermal regeneration. Br J Dermatol. 2002;147:230–43.

    Article  CAS  PubMed  Google Scholar 

  79. Kneilling M, Rocken M. Mast cells: novel clinical perspectives from recent insights. Exp Dermatol. 2009;18:488–96.

    Article  CAS  PubMed  Google Scholar 

  80. Sharp L, Jameson J, Cauvi G, Havran W. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat Immun. 2004;6:73–9.

    Article  CAS  Google Scholar 

  81. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence associated secretory phenotypes reveal cell non-autonomous functions of oncogenic RAS and p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.

    Article  CAS  PubMed  Google Scholar 

  82. Nolte SV, Xu Weiguo W, Rennekampff HO, Rodemann HP. Diversity of fibroblasts – a review on implications for skin tissue engineering. Cell Tissues Organs. 2008;187:165–76.

    Article  Google Scholar 

  83. Eming Sabine A, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127:514–25.

    Article  CAS  PubMed  Google Scholar 

  84. Spiekstra SW, Breetveld M, Rustemeyer T, Scheper RJ, Gibbs S. Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair Regen. 2007;15:708–17.

    Article  PubMed  Google Scholar 

  85. Haniffa MA, Wang XN, Holtick U, Rae M, Isaacs JD, Dickinson AM, Hilkens CMU, Collin MP. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol. 2007;179:1595–604.

    Article  CAS  PubMed  Google Scholar 

  86. Flavell SJ, Hou TZ, Lax AD, Salmon M, Buckley CD. Fibroblasts as novel therapeutic targets in chronic inflammation. Br J Pharmacol. 2008;153:s241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Campisi J, Fagagna F. Cellular senescence: when bad things happen to good cells. Mol Cell Biol. 2007;8:729–40.

    CAS  Google Scholar 

  88. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    Article  CAS  PubMed  Google Scholar 

  89. Sohal RS, Orr WC. Oxidative stress may be a causal factor in senescence. Age. 1998;21:81–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hamilton ML, Remmen HV, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci U S A. 2001;98:10469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin MT, Flint BM. The oxidative theory of aging. Clin Neurosci Res. 2003;2:305–15.

    Article  CAS  Google Scholar 

  92. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD. Microarray analysis of replicative senescence. Curr Biol. 1999;9:939–45.

    Article  CAS  PubMed  Google Scholar 

  93. Wall IB, Moseley R, Briard DM, Kipling D, Giles P, Laffafian I, et al. Fibroblast dysfunction is a key factor in non-healing of chronic venous leg ulcers. J Invest Dermatol. 2008;128:2526–40.

    Article  CAS  PubMed  Google Scholar 

  94. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Child BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479:232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in aging: a review. Int J Cosmet Sci. 2008;30:87–95.

    Article  CAS  PubMed  Google Scholar 

  96. Bol DK, Kigucji K, Gimenez-Conti I, Rupp T, DiGiovanni J. Overexpression of the insulin-like growth factor-1 induces hyperplasia, dermal abnormalities and spontaneous tumor formation in transgenic mice. Oncogene. 1997;14:1725–34.

    Article  CAS  PubMed  Google Scholar 

  97. Wilker E, Bol D, Kiguchi K, Rupp T, Beltran L, Di Giovanni J. Enhancement for susceptibility to diverse skin tumor promoters by activation of the insulin-like growth factor-1 receptor in the epidermis of transgenic mice. Mol Carcinog. 1999;25:122–31.

    Article  CAS  PubMed  Google Scholar 

  98. DiGiovanni J, Bol DK, Wilker E, Beltran L, Carbajal S, Moats S, et al. Constitutive expression of insulin-like growth factor-1 in epidermal basal cells of transgenic mice leads to spontaneous tumor promotion. Cancer Res. 2000;60:1561–70.

    CAS  PubMed  Google Scholar 

  99. Sadagurski M, Yakar S, Weingarten G, Holzenberger M, Rhodes C, Breikreutz D, et al. Insulin-like growth factor receptor signaling regulates skin development and inhibits skin keratinocyte differentiation. Mol Cell Biol. 2006;26:2675–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF1 and germline signaling. Nat Genet. 2001;28:139–45.

    Article  CAS  PubMed  Google Scholar 

  101. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;21:182–7.

    Article  CAS  Google Scholar 

  102. Kruso H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309:1829–33.

    Article  CAS  Google Scholar 

  103. Ikushima M, Rakugi H, Ishidawa K, Maedawa Y, Yamamoto K, Ohta J, et al. Anti-apoptotic and anti-senescent effects of Klotho on vascular endothelial cells. Biochem Biophys Res Commun. 2006;339:827–32.

    Article  CAS  PubMed  Google Scholar 

  104. Chuang T-Y, Lewis DA, Spandau DF. Decreased incidence of nonmelanoma skin cancer in patients with type 2 diabetes mellitus using insulin: a pilot study. Br J Dermatol. 2005;153:552–7.

    Article  CAS  PubMed  Google Scholar 

  105. Ferber A, Chang C, Sells C, Ptasznik A, Cristofalo V, Hubbard K, et al. Failure of senescent human fibroblasts to express insulin-like growth factor-1 gene. J Biol Chem. 1993;268:17883–8.

    CAS  PubMed  Google Scholar 

  106. Pollak M. Insulin and insulin-like growth factor signaling in neoplasia. Nat Rev Cancer. 2008;8:915–28.

    Article  CAS  PubMed  Google Scholar 

  107. Lann D, LeRoith D. The role of endocrine insulin-like growth factor-1 and insulin in breast cancer. J Mammary Gland Biol Neoplasia. 2008;13:371–9.

    Article  PubMed  Google Scholar 

  108. Dziadziuszko R, Camidge DR, Hirsch FR. The insulin-like growth factor in lung cancer. J Thorac Oncol. 2008;3:815–8.

    Article  PubMed  Google Scholar 

  109. Donovan EA, Kummar S. Role of the insulin-like growth factor-1R system in colorectal carcinogenesis. Crit Rev Oncol Hematol. 2008;66:91–8.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Thompson SC, Jolley D, Marks R. Reduction of solar keratosis by regular sunscreen use. N Engl J Med. 1993;329:1147–51.

    Article  CAS  PubMed  Google Scholar 

  111. Green A, Williams G, Neale R, Hart V, Leslie D, Parsons P, Marks G, Gaffney P, Battistath D, Frost C, Lang C, Russell A. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomized controlled trial. Lancet. 1999;354:723–9.

    Article  CAS  PubMed  Google Scholar 

  112. Neale R, Williams G, Green A. Application patterns among participants randomized to daily sunscreen use in a skin cancer prevention trial. Arch Dermatol. 2002;138:1319–25.

    Article  PubMed  Google Scholar 

  113. Travers JB, Spandau DF, Lewis DA, Machado C, Kingsley M, Mousdicas N, Somani AK. Fibroblast senescence and squamous cell carcinoma: how wounding therapies could be protective. Dermatol Surg. 2013;39:967–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cooley JE, Casey DL, Kauffman CL. Manual resurfacing and trichloracetic acid for the treatment of patients with widespread actinic damage. Dermatol Surg. 1997;23:373–9.

    CAS  PubMed  Google Scholar 

  115. Hantash BM, Stewart DB, Cooper AZ, Rehmus WE, Koch RJ, Setter SM. Facial resurfacing for nonmelanoma skin cancer prophylaxis. Arch Dermatol. 2006;142:976–82.

    PubMed  Google Scholar 

  116. Ostertag JU, Quaedvlieg PJF, Neumann MHAM, Kerkels GA. Recurrence rates and long-term follow-up after laser resurfacing as a treatment for widespread actinic dermatoses in the face and on the scalp. Dermatol Surg. 2006;32:261–7.

    CAS  PubMed  Google Scholar 

  117. Halachmi S, Lapidoth M. Lasers in skin cancer prophylaxis. Expert Rev Anticancer Ther. 2008;8:1713–5.

    Article  PubMed  Google Scholar 

  118. Love WE, Bernhard JD, Bordeaux JS. Topical imiquimod or fluorouracil therapy for basal and squamous cell carcinoma. Arch Dermatol. 2009;145:1431–8.

    Article  CAS  PubMed  Google Scholar 

  119. Loesch MM, Somani AK, Kingsley MM, Travers JB, Spandau DF. Skin resurfacing procedures: new and emerging options. Clin Cosmet Investig Dermatol. 2014;28:231–41.

    Google Scholar 

  120. Gye J, Ahn SK, Kwon JE, Hong SP. Use of fractional CO2 laser decreases the risk of skin cancer development during ultraviolet exposure in hairless mice. Dermatol Surg. 2015;41:378–86.

    Article  CAS  PubMed  Google Scholar 

  121. Spandau DF, Lewis DA, Somani AK, Travers JB. Fractionated laser resurfacing corrects the inappropriate UVB response in geriatric skin. J Invest Dermatol. 2012;132:1591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Meshkinpour A, Ghasri P, Pope K, Lyubovitsky JG, Risteli J, Krasieva TB, Kelly KM. Treatment of hypertrophic scars and keloids with a radiofrequency device: a study of collagen effects. Lasers Surg Med. 2005;37:343–9.

    Article  PubMed  Google Scholar 

  123. DeHoratius DM, Dover JS. Nonablative tissue remodeling and photorejuvenation. Clin Dermatol. 2007;25:474–9.

    Article  PubMed  Google Scholar 

  124. Sachs DL, Kang S, Hammerberg C, Helfrich Y, Karimipour D, Orringer J, Johnson T, Hamilton TA, Fisher G, Voorhees JJ. Topical fluorouracil for actinic keratoses and photoaging: a clinical and molecular analysis. Arch Dermatol. 2009;145:659–66.

    Article  PubMed  Google Scholar 

  125. Collett-Solberg PF, Misra M, Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. The role of recombinant human insulin-like growth factor-I in treating children with short stature. J Clin Endocrinol Metabol. 2008;93:10–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan F Spandau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lewis, D.A., Krbanjevic, A., Travers, J.B., Spandau, D.F. (2015). Aging-Associated Nonmelanoma Skin Cancer: A Role for the Dermis. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_58-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_58-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics