Skip to main content

Aging and Senescence of Skin Cells in Culture

  • Living reference work entry
  • First Online:
Textbook of Aging Skin
  • 604 Accesses

Abstract

Studying age-related changes in the physiology, biochemistry, and molecular biology of isolated skin cell populations in culture has greatly expanded the understanding of the fundamental aspects of skin aging. The three main cell types that have been studied extensively with respect to cellular aging in vitro are dermal fibroblasts, epidermal keratinocytes, and melanocytes. Serial subcultivation of normal diploid skin cells can be performed only a limited number of times, and the emerging senescent phenotype can be categorized into structural, physiological, biochemical, and molecular phenotypes, which can be used as biomarkers of cellular aging in vitro. The rate and phenotype of aging are different in different cell types. There are both common features and specific features of aging of skin fibroblasts, keratinocytes, melanocytes, and other cell types. A progressive accumulation of damage in all types of macromolecules is a universal feature of cellular aging in all cell types. A progressive failure of molecular maintenance and repair pathways is the ultimate cause of cellular aging in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hayflick L, Moorhead PS. The serial cultivation of human diploid strains. Exp Cell Res. 1961;25:585–621.

    Article  CAS  PubMed  Google Scholar 

  2. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.

    Article  CAS  PubMed  Google Scholar 

  3. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.

    Article  CAS  PubMed  Google Scholar 

  4. Rattan SIS. Cellular senescence in vitro. In: Encyclopedia of life sciences. John Wiley & Sons; 2008. p. 1–3. doi:10.1002/9780470015902.a0002567.pub2

    Google Scholar 

  5. Norsgaard H, et al. Distinction between differentiation and senescence and the absence of increased apoptosis in human keratinocytes undergoing cellular aging in vitro. Exp Gerontol. 1996;31:563–70.

    Article  CAS  PubMed  Google Scholar 

  6. Yaar M, Gilchrest BA. Ageing and photoageing of keratinocytes and melanocytes. Clin Exp Dermatol. 2001;26:583–91.

    Article  CAS  PubMed  Google Scholar 

  7. Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007;445:843–50.

    Article  CAS  PubMed  Google Scholar 

  8. Berge U, et al. Sugar-induced premature aging and altered differentiation in human epidermal keratinocytes. Ann NY Acad Sci. 2007;1100:524–9.

    Article  CAS  PubMed  Google Scholar 

  9. Berge U, et al. Kinetin-induced differentiation of normal human keratinocytes undergoing aging in vitro. Ann NY Acad Sci. 2006;1067:332–6.

    Article  CAS  PubMed  Google Scholar 

  10. Berge U, et al. Hormetic modulation of differentiation of normal human epidermal keratinocytes undergoing replicative senescence in vitro. Exp Gerontol. 2008;43:658–62.

    Article  CAS  PubMed  Google Scholar 

  11. Tran SL, et al. Absence of distinguishing senescence traits in human melanocytic nevi. J Invest Dermatol. 2012;132:2226–34.

    Article  CAS  PubMed  Google Scholar 

  12. Cristofalo VJ, et al. Replicative senescence: a critical review. Mech Ageing Dev. 2004;125:827–48.

    Article  CAS  PubMed  Google Scholar 

  13. Packer L, Fuehr K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature. 1977;267:423–5.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Q, et al. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A. 1995;92:4337–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Holly AC, et al. Comparison of senescence-associated miRNAs in primary skin and lung fibroblasts. Biogerontology. 2015;16(4):423–34.

    Article  CAS  PubMed  Google Scholar 

  16. Macieira-Coelho A. Ups and downs of aging studies in vitro: the crooked path of science. Gerontology. 2000;46:55–63.

    Article  CAS  PubMed  Google Scholar 

  17. Terman A, et al. Autophagy, organelles and ageing. J Pathol. 2007;211:134–43.

    Article  CAS  PubMed  Google Scholar 

  18. Swanson EC, et al. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol. 2013;203:929–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Demirovic D, et al. Basal level of autophagy is increased in aging human skin fibroblasts in vitro, but not in old skin. PLoS One. 2015;10:e0126546.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Waldera Lupa DM, et al. Characterization of skin aging-associated secreted proteins (SAASP) produced by dermal fibroblasts isolated from intrinsically aged human skin. J Invest Dermatol. 2015;135:1954–68.

    Article  CAS  PubMed  Google Scholar 

  21. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–22.

    Article  CAS  PubMed  Google Scholar 

  22. Blagosklonny MV, Campisi J. Cancer and aging: more puzzles, more promises? Cell Cycle. 2008;7:2615–8.

    Article  CAS  PubMed  Google Scholar 

  23. Dimri GP, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yang NC, Hu ML. The limitations and validities of senescence associated-b-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 2005;40:813–9.

    Article  CAS  PubMed  Google Scholar 

  25. Rubin H. The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat Biotechnol. 2002;20:675–81.

    Article  CAS  PubMed  Google Scholar 

  26. Giangreco A, et al. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell. 2008;7:250–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Youn SW, et al. Cellular senescence induced loss of stem cell proportion in the skin in vitro. J Dermatol Sci. 2005;35:113–23.

    Article  Google Scholar 

  28. Sejersen H, Rattan SIS. Dicarbonyl-induced accelerated aging in vitro in human skin fibroblasts. Biogerontology. 2009;10:203–11.

    Article  CAS  PubMed  Google Scholar 

  29. Collado M, et al. Cellular senescence in cancer and aging. Cell. 2007;130:223–33.

    Article  CAS  PubMed  Google Scholar 

  30. Rattan SIS, Clark BFC. Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem Biophys Res Commun. 1994;201:665–72.

    Article  CAS  PubMed  Google Scholar 

  31. McFarland GA, Holliday R. Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res. 1994;212:167–75.

    Article  CAS  PubMed  Google Scholar 

  32. Lima CF, et al. Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: relevance for anti-aging intervention. Mol Nutr Food Res. 2011;55:430–42.

    Article  CAS  PubMed  Google Scholar 

  33. Demirovic D, Rattan SIS. Curcumin induces stress response and hormetically modulates wound healing ability of human skin fibroblasts undergoing ageing in vitro. Biogerontology. 2011;12:437–44.

    Article  CAS  PubMed  Google Scholar 

  34. Rattan SIS, et al. Hormesis-based anti-aging products: a case study of a novel cosmetic. Dose Response. 2013;11:99–108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Rattan SIS. Hormesis in aging. Ageing Res Rev. 2008;7:63–78.

    Article  PubMed  Google Scholar 

  36. Rattan SIS. Hormetic modulation of aging in human cells. In: Le Bourg E, Rattan SIS, editors. Mild stress and healthy aging: applying hormesis in aging research and interventions. Dordrecht: Springer; 2008. p. 81–96.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh I. S. Rattan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rattan, S.I.S. (2015). Aging and Senescence of Skin Cells in Culture. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_50-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_50-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics