Skip to main content

Aging of Epidermal Stem Cells

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

This review discusses the changes in stem and progenitor populations that occur with aging and, more specifically, changes of the epidermis that occur with aging. The consensus of opinion is that changes responsible for aging of tissues occur not only in the stem cell pool itself but also in the transit-amplifying cell compartment and in the stem cell environment. In order to study aging of epidermal stem cells, it is essential to isolate epidermal stem cells at the single cell level to better define them at a molecular level. It will also be important to study the intrinsic and extrinsic changes that occur in the environment/niche of the epidermal stem cell with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Anversa P, Kajstura J, Leri A, Bolli R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation. 2006;113:1451–63.

    Article  PubMed  Google Scholar 

  2. Galvan V, Jin K. Neurogenesis in the aging brain. Clin Interv Aging. 2007;2:605–10.

    PubMed  PubMed Central  Google Scholar 

  3. Rossi DJ, Bryder D, Weissman IL. Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol. 2007;42:385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Haan G, Van Zant G. Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood. 1999;93:3294–301.

    PubMed  Google Scholar 

  5. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL. The aging of hematopoietic stem cells. Nat Med. 1996;2:1011–6.

    Article  CAS  PubMed  Google Scholar 

  6. Gekas C, Graf T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood. 2013;121:4463–72.

    Article  CAS  PubMed  Google Scholar 

  7. Gibson MC, Schultz E. Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve. 1983;6:574–80.

    Article  CAS  PubMed  Google Scholar 

  8. Conboy IM, Conboy MJ, Smythe GM, Rando TA. Notch-mediated restoration of regenerative potential to aged muscle. Science. 2003;302:1575–7.

    Article  CAS  PubMed  Google Scholar 

  9. Brack AS, Bildsoe H, Hughes SM. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci. 2005;118:4813–21.

    Article  CAS  PubMed  Google Scholar 

  10. Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells (Dayton, Ohio). 2007;25:885–94.

    Article  CAS  Google Scholar 

  11. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z. Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol. 2006;294:50–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rando TA. Stem cells, ageing and the quest for immortality. Nature. 2006;441:1080–6.

    Article  CAS  PubMed  Google Scholar 

  13. Stern MM, Bickenbach JR. Epidermal stem cells are resistant to cellular aging. Aging Cell. 2007;6:439–52.

    Article  CAS  PubMed  Google Scholar 

  14. Rossi DJ. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci. 2005;102:9194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conboy IM, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760–4.

    Article  CAS  PubMed  Google Scholar 

  16. Guo M, Jan LY, Jan YN. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron. 1996;17:27–41.

    Article  PubMed  Google Scholar 

  17. Zhong W, Feder JN, Jiang MM, Jan LY, Jan YN. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron. 1996;17:43–53.

    Article  CAS  PubMed  Google Scholar 

  18. Bernet JD, et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014;20:265–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cosgrove BD, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. 2014;20:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wallenfang MR. Aging within the stem cell niche. Dev Cell. 2007;13:603–4.

    Article  CAS  PubMed  Google Scholar 

  21. Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science. 2000;290:328–30.

    Article  CAS  PubMed  Google Scholar 

  22. Boyle M, Wong C, Rocha M, Jones DL. Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell. 2007;1:470–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ryu B-Y, Orwig KE, Oatley JM, Avarbock MR, Brinster RL. Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells (Dayton, Ohio). 2006;24:1505–11.

    Article  CAS  Google Scholar 

  24. Carlson BM, Faulkner JA. Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol. 1989;256:C1262–6.

    CAS  PubMed  Google Scholar 

  25. Mezzogiorno A, Coletta M, Zani BM, Cossu G, Molinaro M. Paracrine stimulation of senescent satellite cell proliferation by factors released by muscle or myotubes from young mice. Mech Ageing Dev. 1993;70:35–44.

    Article  CAS  PubMed  Google Scholar 

  26. Gopinath SD, Rando TA. Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell. 2008;7:590–8.

    Article  CAS  PubMed  Google Scholar 

  27. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110:1001–20.

    CAS  PubMed  Google Scholar 

  28. Lynch MD. Selective pressure for a decreased rate of asymmetrical divisions within stem cell niches may contribute to age-related alterations in stem cell function. Rejuvenation Res. 2004;7:111–25.

    Article  CAS  PubMed  Google Scholar 

  29. Meineke FA, Potten CS, Loeffler M. Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif. 2001;34:253–66.

    Article  CAS  PubMed  Google Scholar 

  30. Holt PR, Yeh KY, Kotler DP. Altered controls of proliferation in proximal small intestine of the senescent rat. Proc Natl Acad Sci U S A. 1988;85:2771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Charruyer A, et al. Transit-amplifying cell frequency and cell cycle kinetics are altered in aged epidermis. J Invest Dermatol. 2009;129:2574–83.

    Article  CAS  PubMed  Google Scholar 

  32. He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol. 2009;25:377–406.

    Article  CAS  PubMed  Google Scholar 

  33. Signer RAJ, Morrison SJ. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell. 2013;12:152–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishino J, Kim I, Chada K, Morrison SJ. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell. 2008;135:227–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Janzen V, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 2006;443:421–6.

    CAS  PubMed  Google Scholar 

  36. Molofsky AV, et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature. 2006;443:448–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Doles J, Storer M, Cozzuto L, Roma G, Keyes WM. Age-associated inflammation inhibits epidermal stem cell function. Genes Dev. 2012;26:2144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keyes BE, et al. Nfatc1 orchestrates aging in hair follicle stem cells. Proc Natl Acad Sci U S A. 2013;110:E4950–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Walford RL. Letter: when is a mouse ‘old’? J Immunol Baltim. 1976;117:352.

    CAS  Google Scholar 

  40. Miller RA, Nadon NL. Principles of animal use for gerontological research. J Gerontol A Biol Sci Med Sci. 2000;55:B117–23.

    Article  CAS  PubMed  Google Scholar 

  41. Hocking T. The physiology of human aging. 2005. at www.ocf.berkeley.edu/~tdhock/science/HumanAging.pdf

  42. Rattan SIS. Increased molecular damage and heterogeneity as the basis of aging. Biol Chem. 2008;389:267–72.

    Article  CAS  PubMed  Google Scholar 

  43. Uchida N, Fleming WH, Alpern EJ, Weissman IL. Heterogeneity of hematopoietic stem cells. Curr Opin Immunol. 1993;5:177–84.

    Article  CAS  PubMed  Google Scholar 

  44. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994;1:661–73.

    Article  CAS  PubMed  Google Scholar 

  45. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104:233–45.

    Article  CAS  PubMed  Google Scholar 

  46. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102:451–61.

    Article  CAS  PubMed  Google Scholar 

  47. Ghadially R. In search of the elusive epidermal stem cell. Ernst Schering Res Found Workshop. 2005;54:45–62.

    Google Scholar 

  48. Schneider TE, et al. Measuring stem cell frequency in epidermis: a quantitative in vivo functional assay for long-term repopulating cells. Proc Natl Acad Sci U S A. 2003;100:11412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaur P. Interfollicular epidermal stem cells: identification, challenges, potential. J Invest Dermatol. 2006;126:1450–8.

    Article  CAS  PubMed  Google Scholar 

  50. Nishimura EK, et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002;416:854–60.

    Article  CAS  PubMed  Google Scholar 

  51. Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell. 1993;73:713–24.

    Article  CAS  PubMed  Google Scholar 

  52. Terunuma A, Jackson KL, Kapoor V, Telford WG, Vogel JC. Side population keratinocytes resembling bone marrow side population stem cells are distinct from label-retaining keratinocyte stem cells. J Invest Dermatol. 2003;121:1095–103.

    Article  CAS  PubMed  Google Scholar 

  53. Triel C, Vestergaard ME, Bolund L, Jensen TG, Jensen UB. Side population cells in human and mouse epidermis lack stem cell characteristics. Exp Cell Res. 2004;295:79–90.

    Article  CAS  PubMed  Google Scholar 

  54. Li A, Simmons PJ, Kaur P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci U S A. 1998;95:3902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Terunuma A, et al. Stem cell activity of human side population and alpha6 integrin-bright keratinocytes defined by a quantitative in vivo assay. Stem Cells (Dayton, Ohio). 2007;25:664–9.

    CAS  Google Scholar 

  56. Charruyer A, et al. CD133 is a marker for long-term repopulating murine epidermal stem cells. J Invest Dermatol. 2012. doi:10.1038/jid.2012.196.

    PubMed  PubMed Central  Google Scholar 

  57. Strachan LR, Scalapino KJ, Lawrence HJ, Ghadially R. Rapid adhesion to collagen isolates murine keratinocytes with limited long-term repopulating ability in vivo despite high clonogenicity in vitro. Stem Cells (Dayton, Ohio). 2008;26:235–43.

    Article  CAS  Google Scholar 

  58. Szabo AZ, et al. The CD44+ ALDH+ population of human keratinocytes is enriched for epidermal stem cells with long-term repopulating ability. Stem Cells (Dayton, Ohio). 2013;31:786–99.

    Article  CAS  Google Scholar 

  59. Li A, Pouliot N, Redvers R, Kaur P. Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J Clin Invest. 2004;113:390–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bickenbach JR. Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res. 1981;60 Spec No C:1611–20.

    Article  CAS  PubMed  Google Scholar 

  61. Yang A, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398:714–8.

    Article  CAS  PubMed  Google Scholar 

  62. Stasiak PC, Purkis PE, Leigh IM, Lane EB. Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins. J Invest Dermatol. 1989;92:707–16.

    Article  CAS  PubMed  Google Scholar 

  63. Lyle S, et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J Cell Sci. 1998;111(Pt 21):3179–88.

    CAS  PubMed  Google Scholar 

  64. Zhu AJ, Watt FM. Beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Dev Camb Engl 1999;126:2285–98.

    Google Scholar 

  65. Kaur P, Li A. Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells. J Invest Dermatol. 2000;114:413–20.

    Article  CAS  PubMed  Google Scholar 

  66. Braun KM, Watt FM. Epidermal label-retaining cells: background and recent applications. J Investig Dermatol Symp Proc. 2004;9:196–201.

    Article  PubMed  Google Scholar 

  67. Inoue K, et al. Differential expression of stem-cell-associated markers in human hair follicle epithelial cells. Lab Investig J Tech Methods Pathol. 2009;89:844–56.

    Article  CAS  Google Scholar 

  68. Dunnwald M, Chinnathambi S, Alexandrunas D, Bickenbach JR. Mouse epidermal stem cells proceed through the cell cycle. J Cell Physiol. 2003;195:194–201.

    Article  CAS  PubMed  Google Scholar 

  69. Larderet G, et al. Human side population keratinocytes exhibit long-term proliferative potential and a specific gene expression profile and can form a pluristratified epidermis. Stem Cells Dayt Ohio. 2006;24:965–74.

    Article  CAS  Google Scholar 

  70. Zhou J-X, et al. Enrichment and characterization of mouse putative epidermal stem cells. Cell Biol Int. 2004;28:523–9.

    Article  CAS  PubMed  Google Scholar 

  71. Michel M, et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci. 1996;109(Pt 5):1017–28.

    CAS  PubMed  Google Scholar 

  72. Sasahara Y, et al. Human keratinocytes derived from the bulge region of hair follicles are refractory to differentiation. Int J Oncol. 2009;34:1191–9.

    CAS  PubMed  Google Scholar 

  73. Trempus CS, et al. CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res. 2007;67:4173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nakamura Y, et al. Expression of CD90 on keratinocyte stem/progenitor cells. Br J Dermatol. 2006;154:1062–70.

    Article  CAS  PubMed  Google Scholar 

  75. Jaks V, et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008;40:1291–9.

    Article  CAS  PubMed  Google Scholar 

  76. Snippert HJ, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science. 2010;327:1385–9.

    Article  CAS  PubMed  Google Scholar 

  77. Nijhof JGW, et al. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Dev Camb Engl. 2006;133:3027–37.

    CAS  Google Scholar 

  78. Jensen KB, et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell. 2009;4:427–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jensen KB, Watt FM. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci. 2006;103:11958–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lowell S, Jones P, Le Roux I, Dunne J, Watt FM. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol CB. 2000;10:491–500.

    Article  CAS  PubMed  Google Scholar 

  81. Estrach S, Cordes R, Hozumi K, Gossler A, Watt FM. Role of the Notch ligand Delta1 in embryonic and adult mouse epidermis. J Invest Dermatol. 2008;128:825–32.

    Article  CAS  PubMed  Google Scholar 

  82. Pellegrini G, et al. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A. 2001;98:3156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fortunel NO, et al. Long-term expansion of human functional epidermal precursor cells: promotion of extensive amplification by low TGF-beta1 concentrations. J Cell Sci. 2003;116:4043–52.

    Article  CAS  PubMed  Google Scholar 

  84. Matic M. A subpopulation of human basal keratinocytes has a low/negative MHC class I expression. Hum Immunol. 2005;66:962–8.

    Article  CAS  PubMed  Google Scholar 

  85. Chen Z, Evans WH, Pflugfelder SC, Li D-Q. Gap junction protein connexin 43 serves as a negative marker for a stem cell-containing population of human limbal epithelial cells. Stem Cells Dayt Ohio. 2006;24:1265–73.

    Article  CAS  Google Scholar 

  86. Wan H, et al. Desmosomal proteins, including desmoglein 3, serve as novel negative markers for epidermal stem cell-containing population of keratinocytes. J Cell Sci. 2003;116:4239–48.

    Article  CAS  PubMed  Google Scholar 

  87. Wan H, et al. Stem/progenitor cell-like properties of desmoglein 3dim cells in primary and immortalized keratinocyte lines. Stem Cells Dayt Ohio. 2007;25:1286–97.

    Article  CAS  Google Scholar 

  88. Ohyama M, et al. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest. 2006;116:249–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cerimele D, Celleno L, Serri F. Physiological changes in ageing skin. Br J Dermatol. 1990;122 Suppl 35:13–20.

    Article  PubMed  Google Scholar 

  90. Gerstein AD, Phillips TJ, Rogers GS, Gilchrest BA. Wound healing and aging. Dermatol Clin. 1993;11:749–57.

    CAS  PubMed  Google Scholar 

  91. Gilchrest BA. In vitro assessment of keratinocyte aging. J Invest Dermatol. 1983;81:184s–9.

    Article  CAS  PubMed  Google Scholar 

  92. Grove GL. Age-related differences in healing of superficial skin wounds in humans. Arch Dermatol Res. 1982;272:381–5.

    Article  CAS  PubMed  Google Scholar 

  93. Grove GL, Kligman AM. Age-associated changes in human epidermal cell renewal. J Gerontol. 1983;38:137–42.

    Article  CAS  PubMed  Google Scholar 

  94. Haratake A, Uchida Y, Mimura K, Elias PM, Holleran WM. Intrinsically aged epidermis displays diminished UVB-induced alterations in barrier function associated with decreased proliferation. J Invest Dermatol. 1997;108:319–23.

    Article  CAS  PubMed  Google Scholar 

  95. Leyden JJ, McGinley KJ, Grove GL, Kligman AM. Age-related differences in the rate of desquamation of skin surface cells [proceedings]. Adv Exp Med Biol. 1978;97:297–8.

    CAS  PubMed  Google Scholar 

  96. Roberts D, Marks R. The determination of regional and age variations in the rate of desquamation: a comparison of four techniques. J Invest Dermatol. 1980;74:13–6.

    Article  CAS  PubMed  Google Scholar 

  97. Ito M, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11:1351–4.

    Article  CAS  PubMed  Google Scholar 

  98. Nouy P. Biological Time. 1937.

    Google Scholar 

  99. Rheinwald JG, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature publishing group. 1977;265:421–4.

    Google Scholar 

  100. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6:331–43.

    Article  CAS  PubMed  Google Scholar 

  101. Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A. 1987;84:2302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Youn SW, et al. Cellular senescence induced loss of stem cell proportion in the skin in vitro. J Dermatol Sci. 2004;35:113–23.

    Article  CAS  PubMed  Google Scholar 

  103. Liang L, et al. As epidermal stem cells age they do not substantially change their characteristics. J Investig Dermatol Symp Proc. 2004;9:229–37.

    Article  CAS  PubMed  Google Scholar 

  104. Giangreco A, Qin M, Pintar JE, Watt FM. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell. 2008;7:250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Harrison DE, Astle CM, Stone M. Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. J Immunol Baltim. 1989;142:3833–40.

    CAS  Google Scholar 

  106. Sudo K, Ema H, Morita Y, Nakauchi H. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 2000;192:1273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Falandry C, Bonnefoy M, Freyer G, Gilson E. Biology of cancer and aging: a complex association with cellular senescence. J Clin Oncol. 2014;32:2604–10.

    Article  PubMed  Google Scholar 

  108. Gniadecki R, Hansen M, Wulf HC. Resistance of senescent keratinocytes to UV-induced apoptosis. Cell Mol Biol. 2000;46:121–7.

    CAS  PubMed  Google Scholar 

  109. Matta JL, et al. DNA repair and nonmelanoma skin cancer in Puerto Rican populations. J Am Acad Dermatol. 2003;49:433–9.

    Article  PubMed  Google Scholar 

  110. Wulf HC, Sandby-Møller J, Kobayasi T, Gniadecki R. Skin aging and natural photoprotection. Micron. 2004;35:185–91.

    Article  CAS  PubMed  Google Scholar 

  111. Trumpp A, Essers M, Wilson A. Awakening dormant haematopoietic stem cells. Nat Rev Immunol. 2010;10:201–9.

    Article  CAS  PubMed  Google Scholar 

  112. Schepers AG, et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science. 2012;337:730–5.

    Article  CAS  PubMed  Google Scholar 

  113. Snippert HJ, Schepers AG, van Es JH, Simons BD, Clevers H. Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep. 2014;15:62–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004;118:635–48.

    Article  CAS  PubMed  Google Scholar 

  115. Morris RJ, et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol. 2004;22:411–7.

    Article  CAS  PubMed  Google Scholar 

  116. Tumbar T. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruby Ghadially .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Charruyer, A., Ghadially, R. (2015). Aging of Epidermal Stem Cells. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_19-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_19-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics