Skip to main content

Application of In Vitro Methods in Preclinical Safety Assessment of Skin Care Products

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

One of the critical responsibilities of cosmetic and personal care industry is to determine the safety profile of the ingredients and/or formulations before launching new products on the market for consumers’ use. While products manufactured by other industries are thoroughly regulated (pharmaceuticals, pesticides, etc.), the safety assessment of cosmetic and personal care products seems to be less strictly integrated in the regulatory framework, despite the fact that the type of testing methods allowed for use became more restrictive in recent years. As such, a ban on animal testing of cosmetic ingredients and final formulations in the European Union (EU) took effect between 2009 and 2013. Thereon, industry used testing strategies based on nonanimal methods that were often designed to assess the safety profile of specific product lines. A diverse range of in vitro methods is now available and considered suitable to provide reliable interpretation of the safety data regarding ingredients used in finished cosmetic and personal care products. These methods range from simple cell monoculture test systems to more complex such as explants or three-dimensional reconstructed organotypic tissue models. This chapter discusses the use of several in vitro methods in the preclinical safety assessment of skin care products with special emphasis on skin irritation and sensitization endpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Morganti P, Paglialunga S. EU borderline cosmetic products review of current regulatory status. Clin Dermatol. 2008;26:392–7.

    Article  PubMed  Google Scholar 

  2. Draize J, Woodard G, Calvery H. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82:377–90.

    CAS  Google Scholar 

  3. Weil CS, Scala RA. Study of intra- and interlaboratory variability in the results of rabbit eye and skin irritation tests. Toxicol Appl Pharmacol. 1971;19:276–360.

    Article  CAS  PubMed  Google Scholar 

  4. Phillips 2nd L, Steinberg M, Maibach HI, Akers WA. A comparison of rabbit and human skin response to certain irritants. Toxicol Appl Pharmacol. 1972;21:369–82.

    Article  CAS  PubMed  Google Scholar 

  5. Nixon GA, Tyson CA, Wertz WC. Interspecies comparisons of skin irritancy. Toxicol Appl Pharmacol. 1975;31:481–90.

    Article  CAS  PubMed  Google Scholar 

  6. Basketter DA, York M, McFadden JP, Robinson MK. Determination of skin irritation potential in the human 4-h patch test. Contact Dermatitis. 2004;51:1–4.

    Article  CAS  PubMed  Google Scholar 

  7. Netzlaff F, Lehr CM, Wertz PW, Schaefer UF. The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm. 2005;60:167–78.

    Article  CAS  PubMed  Google Scholar 

  8. Gibbs S, Vicanova J, Bouwstra J, Valstar D, Kempenaar J, Ponec M. Culture of reconstructed epidermis in a defined medium at 33 degrees C shows a delayed epidermal maturation, prolonged lifespan and improved stratum corneum. Arch Dermatol Res. 1997;289:585–95.

    Article  CAS  PubMed  Google Scholar 

  9. Gibbs S, Vietsch H, Meier U, Ponec M. Effect of skin barrier competence on SLS and water-induced IL-1alpha expression. Exp Dermatol. 2002;11:217–23.

    Article  CAS  PubMed  Google Scholar 

  10. Boelsma E, Gibbs S, Faller C, Ponec M. Characterization and comparison of reconstructed skin models: morphological and immunohistochemical evaluation. Acta Derm Venereol. 2000;80:82–8.

    CAS  PubMed  Google Scholar 

  11. Ponec M, Boelsma E, Weerheim A, Mulder A, Bouwstra J, Mommaas M. Lipid and ultrastructural characterization of reconstructed skin models. Int J Pharm. 2000;203:211–25.

    Article  CAS  PubMed  Google Scholar 

  12. Perkins MA, Osborne R, Rana FR, Ghassemi A, Robinson MK. Comparison of in vitro and in vivo human skin responses to consumer products and ingredients with a range of irritation potential. Toxicol Sci. 1999;48:218–29.

    Article  CAS  PubMed  Google Scholar 

  13. Wells T, Basketter DA, Schröder KR. In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Toxicol In Vitro. 2004;18:231–43.

    Article  Google Scholar 

  14. Costin G-E, Raabe H, Curren R. In vitro safety testing strategy for skin irritation using the 3D reconstructed human epidermis. Rom J Biochem. 2009;46:165–86.

    CAS  Google Scholar 

  15. ECETOC. Technical report No. 66. Skin irritation and corrosion: referenced chemicals data bank. 1995.

    Google Scholar 

  16. Jirova D, Liebsch M, Basketter D, Spiller E, Kejlova K, Bendova H, Marriott M, Kandarova H. Comparison of human skin irritation and photo-irritation patch test data with cellular in vitro assays and animal in vivo data. AATEX. 2007;14:359–65.

    Google Scholar 

  17. Cua AB, Wilhelm K-P, Maibach HI. Cutaneous sodium lauryl sulfate irritation potential: age and regional variability. Br J Dermatol. 1990;123:607–13.

    Article  CAS  PubMed  Google Scholar 

  18. Dillarstone A, Paye M. Antagonism in concentrated surfactant system. Contact Dermatitis. 1993;28:198.

    Article  CAS  PubMed  Google Scholar 

  19. Basketter DA, Whittle E, Griffiths HA, York M. The identification and classification of skin irritation hazard by a human patch test. Food Chem Toxicol. 1994;32:769–75.

    Article  CAS  PubMed  Google Scholar 

  20. Robinson MK, Perkins MA, Basketter DA. Application of a 4-h human patch test method for comparative and investigative assessment of skin irritation. Contact Dermatitis. 1998;38:194–202.

    Article  CAS  PubMed  Google Scholar 

  21. Basketter DA, Chamberlain M, Griffiths HA, Rowson M, Whittle E, York M. The classification of skin irritants by human patch test. Food Chem Toxicol. 1997;35:845–52.

    Article  CAS  PubMed  Google Scholar 

  22. Robinson MK, Osborne R, Perkins MA. In vitro and human testing strategies for skin irritation. Ann N Y Acad Sci. 2000;919:192–204.

    Article  CAS  PubMed  Google Scholar 

  23. Robinson MK, McFadden JP, Basketter DA. Validity and ethics of the human 4-h patch test as an alternative method to assess acute skin irritation potential. Contact Dermatitis. 2001;45:1–12.

    Article  CAS  PubMed  Google Scholar 

  24. Robinson MK, Kruszewski FH, Al-Atrash J, Blazka ME, Gingell R, Heitfeld FA, Mallon D, Snyder NK, Swanson JE, Casterton PL. Comparative assessment of acute skin irritation potential of detergent formulations using a novel human 4-h patch test method. Food Chem Toxicol. 2005;43:1703–12.

    Article  CAS  PubMed  Google Scholar 

  25. Spielmann H, Hoffmann S, Liebsch M, Botham P, Fentem JH, Eskes C, Roguet R, Cotovio J, Cole T, Worth A, Heylings J, Jones P, Robles C, Kandarova H, Gamer A, Remmele M, Curren R, Raabe H, Cockshott A, Gerner I, Zuang V. The ECVAM international validation study on in vitro tests for acute skin irritation: report on the validity of the EPISKIN and EpiDerm assays and on the Skin Integrity Function Test. Altern Lab Anim. 2007;35:559–601.

    CAS  PubMed  Google Scholar 

  26. Hoffmann S, Saliner AG, Patlewicz G, Eskes C, Zuang V, Worth AP. A feasibility study developing an integrated testing strategy assessing skin irritation potential of chemicals. Toxicol Lett. 2008;180:9–20.

    Article  CAS  PubMed  Google Scholar 

  27. Cameron DM, Donahue DA, Costin GE, Kaufman LE, Avalos J, Downey ME, Billhimer WL, Gilpin S, Wilt N, Simion FA. Confirmation of in vitro and clinical safety assessment of behentrimonium chloride-containing leave-on body lotions using post-marketing adverse event data. Toxicol In Vitro. 2013;27:2203–12.

    Article  CAS  PubMed  Google Scholar 

  28. Miles A, Berthet A, Hopf NB, Gilliet M, Raffoul W, Vernez D, Spring P. A new alternative method for testing skin irritation using a human skin model: a pilot study. Toxicol In Vitro. 2014;28:240–7.

    Article  CAS  PubMed  Google Scholar 

  29. Fentem JH, Briggs D, Chesne C, Elliott GR, Harbell JW, Heylings JR, Portes P, Roguet R, van de Sandt JJ, Botham PA. A prevalidation study on in vitro tests for acute skin irritation. Results and evaluation by the management team. Toxicol In Vitro. 2001;15:57–93.

    Article  CAS  PubMed  Google Scholar 

  30. Bagley DM, Gardner JR, Holland G, Lewis RW, Regnier JF, Stringer DA, Walker AP. Skin irritation: reference chemicals data bank. Toxicol In Vitro. 1996;10:1–6.

    Article  CAS  PubMed  Google Scholar 

  31. Demetrulias J, Donnelly T, Morhenn V, Jessee B, Hainsworth S, Casterton P, Bernhofer L, Martin K, Decker D. Skin2® – and in vitro human skin model: the correlation between in vivo and in vitro skin testing of surfactants. Exp Dermatol. 1998;7:18–26.

    Article  CAS  PubMed  Google Scholar 

  32. Doyle JM, Dressler WE, Rachui SR. Evaluation of two in vitro human skin equivalents (EpiDERM™ and SKIN2™ model ZK13000 for assessing the skin irritation potential of personal care products and chemicals. In: Salem H, Katz SA, editors. Advances in animal alternatives for safety and efficacy testing. Washington, DC: Taylor & Francis; 1998. p. 285–91.

    Google Scholar 

  33. Sauder D, Pastore S. Cytokines in contact dermatitis. Am J Contact Dermat. 1994;4:215–24.

    Article  Google Scholar 

  34. Kimber I, Dearman RJ, Cumberbatch M. Epidermal cytokines and the induction of allergic and non-allergic contact dermatitis. Arch Toxicol Suppl. 1997;19:229–38.

    Article  CAS  PubMed  Google Scholar 

  35. McKenzie RC, Sauder DN. The role of keratinocyte cytokines in inflammation and immunity. J Invest Dermatol. 1990;95:105S–7.

    Article  CAS  PubMed  Google Scholar 

  36. Broeckx A, Blondeel A, Boom-Gossens A, Achten G. Cosmetic intolerance. Contact Dermat. 1987;16:189–94.

    Article  CAS  Google Scholar 

  37. Osborne R, Perkins MA. An approach for development of alternative test methods based on mechanisms of skin irritation. Food Chem Toxicol. 1994;32:133–42.

    Article  CAS  PubMed  Google Scholar 

  38. de Brugerolle de Fraissinette A, Picarles V, Chibout S, Kolopp M, Medina J, Burtin P, Ebelin ME, Osborne S, Mayer FK, Spake A, Rosdy M, De Wever B, Ettlin RA, Cordier A. Predictivity of an in vitro model for acute and chronic skin irritation (SkinEthic) applied to the testing of topical vehicles. Cell Biol Toxicol. 1999;15:121–35.

    Article  Google Scholar 

  39. Roguet R, Cohen C, Robles C, Courtellemont P, Tolle M, Guillot JP, Pouradier DX. An interlaboratory study of the reproducibility and relevance of EpiSkin, a reconstructed human epidermis, in the assessment of cosmetics irritancy. Toxicol In Vitro. 1998;12:295–304.

    Article  CAS  PubMed  Google Scholar 

  40. Augustin C, Collombel C, Damour O. Use of dermal equivalent and skin equivalent models for in vitro cutaneous irritation testing of cosmetic products: comparison with in vivo human data. J Toxicol Cutan Ocul Toxicol. 1998;17:5–17.

    Article  CAS  Google Scholar 

  41. Warren R, Sanders LM, Curtis SL, Wong LF, Zhu C, Tollens FR, Otte TE. Human in vitro and in vivo cutaneous responses to soap suspension: role of solution behavior in predicting potential irritant contact dermatitis. In Vitr Mol Toxicol. 1999;12:97–107.

    CAS  Google Scholar 

  42. Faller C, Bracher M. Reconstructed skin kits: reproducibility of cutaneous irritancy testing. Skin Parmacol Appl Skin Physiol. 2002;15:74–91.

    Article  CAS  Google Scholar 

  43. Bernhofer LP, Seiberg M, Martin KM. The influence of the response of skin equivalent systems to topically applied consumer products by epithelial-mesenchymal interactions. Toxicol In Vitro. 1999;13:219–29.

    Article  CAS  PubMed  Google Scholar 

  44. Bernhofer LP, Bakovic S, Appa Y, Martin KM. IL-1alpha and IL-1ra secretion from epidermal equivalents and the prediction of the irritation potential of mild soap and surfactant-based consumer products. Toxicol In Vitro. 1999;13:231–9.

    Article  CAS  PubMed  Google Scholar 

  45. Lémery E, Briançon S, Chevalier Y, Border C, Oddos T, Gohier A, Molzinger MA. Skin toxicity of surfactants: structure/toxicity relationships. Colloids Surf A Physicochem Eng Asp. 2015;469:166–79.

    Article  Google Scholar 

  46. Tornier C, Rosdy M, Maibach HI. In vitro skin irritation testing on reconstituted human epidermis: reproducibility for 50 chemicals tested in two protocols. Toxicol In Vitro. 2006;20:401–16.

    Article  CAS  PubMed  Google Scholar 

  47. Perkins MA, Osterhues MA, Farage MA, Robinson MK. A noninvasive method to assess skin irritation and compromised skin conditions using simple tape adsorption of molecular markers of inflammation. Skin Res Technol. 2001;7:227–37.

    Article  CAS  PubMed  Google Scholar 

  48. de Jongh CM, Verberk MM, Withagen CE, Jacobs JJ, Rustemeyer T, Kezic S. Stratum corneum cytokines and skin irritation response to sodium lauryl sulfate. Contact Dermatitis. 2006;54:325–33.

    Article  PubMed  Google Scholar 

  49. de Jongh CM, Lutter R, Verberk MM, Kezic C. Differential cytokine expression in skin after single and repeated irritation by sodium lauryl sulfate. Exp Dermatol. 2007;16:1032–40.

    Article  PubMed  Google Scholar 

  50. de Jongh CM, Verberk MM, Spiekstra SW, Gibbs S, Kezic S. Cytokines at different stratum corneum levels in normal and sodium lauryl sulfate-irritated skin. Skin Res Technol. 2007;13:390–8.

    Article  PubMed  Google Scholar 

  51. Mackay C, Davies M, Summerfield V, Maxwell G. From pathways to people: applying the adverse outcome pathway (AOP) for skin sensitization to risk assessment. ALTEX. 2013;30:473–86.

    Article  PubMed  Google Scholar 

  52. OECD. Test No. 442C: In chemico skin sensitisation: Direct Peptide Reactivity Assay (DPRA), OECD guidelines for the testing of chemicals, Section 4. Paris: OECD Publishing; 2015. doi:10.1787/9789264229709-en.

    Google Scholar 

  53. OECD. Test No. 442D: In vitro skin sensitisation: ARE-Nrf2 Luciferase Test Method, OECD guidelines for the testing of chemicals, Section 4. Paris: OECD Publishing; 2015. doi:10.1787/9789264229822-en.

    Google Scholar 

  54. Gerberick FG, Vassallo JD, Bailey RE, Chaney JG, Morrall SW, Lepoittevin JP. Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci. 2004;81:332–43.

    Article  CAS  PubMed  Google Scholar 

  55. Emter R, Ellis G, Natsch A. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicol Appl Pharmacol. 2010;245:281–90.

    Article  CAS  PubMed  Google Scholar 

  56. Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, Miyazawa Y, Ito Y, Suzuki H, Toyoda H. Development of an in vitro skin sensitization test using human cell lines: human cell line activation test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro. 2006;20:767–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gertrude-Emilia Costin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Costin, GE., Norman, K.G. (2015). Application of In Vitro Methods in Preclinical Safety Assessment of Skin Care Products. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_130-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_130-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics