Skip to main content

Age-Related Morphometric Changes of Inner Structures of the Skin Assessed by In Vivo Reflectance Confocal Microscopy

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

The study of skin aging has greatly advanced. The inner structure of the skin can now be studied using various methods. This chapter describes observations on the inner structure of the skin and its age-related changes using in vivo reflectance confocal microscopy (RCM). RCM is a noninvasive method and offers real-time observation.

The human skin is made up of the epidermis and dermis. Each layer has characteristic inner structures. These inner structures and their age-related changes have been observed using RCM. The epidermis is divided into four layers, which differ in thickness and cell shape. The cells of the epidermis are densely arranged. The epidermis and dermis are separated by a basement membrane and form a concave–convex structure known as the dermal papilla. The dermis consists of cellular and stromal components, which form fibrotic tissue.

The inner structures of the epidermis change with age. The depth from the skin surface to the lower end of the dermal papillae and the thickness of the basal layer become thinner with age, and the granular layer becomes thicker with age. The structure of the dermal papillae is evaluated by calculating its parameters. Decrease in number, increase in cross-sectional area, and decrease in the height of the dermal papillae have all been observed with aging. Finally, with age, fibrous structures in the dermis change from a cobweb-like pattern to being oriented in the same direction. Elucidating these inner structural changes caused by aging may further the understanding of skin aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Shimizu H. Shimizu’s textbook of dermatology. 1st ed. Hokkaido: Hokkaido University Press; 2007. p. 1–26.

    Google Scholar 

  2. Freeman RG, Cockerell EG, Armstrong J, et al. Sunlight as a factor influencing the thickness of epidermis. J Invest Dermatol. 1962;39:295–8.

    Article  CAS  PubMed  Google Scholar 

  3. Fligiel SE, Varani J, Datta SC, et al. Collagen degradation in aged/photodamaged skin in vivo and after exposure to matrix metalloproteinase-1 in vitro. J Invest Dermatol. 2003;120:842–8.

    Article  CAS  PubMed  Google Scholar 

  4. Mine S, Fortunel NO, Pageon H, et al. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. PLoS One. 2008; 3. doi: 10.1371/journal.pone.0004066

    Google Scholar 

  5. Holbrook KA, Odland GF. Regional differences in the thickness (cell layers) of the human horny cell layer: an ultra structural analysis. J Invest Dermatol. 1974;62:415–22.

    Article  CAS  PubMed  Google Scholar 

  6. Contet-Andonneau JL, Jeanmaire C, Pauly G. A histological study of human wrinkle structures: a comparison between sun-exposed areas of the face, with or without wrinkles and sun-protected areas. Br J Dermatol. 1999;140:1038–47.

    Article  Google Scholar 

  7. Rajadhyaksha M, González S, Zavislan JM, et al. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol. 1999;113:293–303.

    Article  CAS  PubMed  Google Scholar 

  8. Corcuff P, Bertrand C, Leveque JL, et al. Morphometry of human epidermis in vivo by real-time confocal microscopy. Arch Dermatol Res. 1993;285:475–81.

    Article  CAS  PubMed  Google Scholar 

  9. Bertrand C, Corcuff P. In vivo spatio-temporal visualization of the human skin by real-time confocal microscopy. Scanning. 1994;16:150–4.

    Article  CAS  PubMed  Google Scholar 

  10. González S, González E, White WM, et al. Allergic contact dermatitis: correlation of in vivo confocal imaging to routine histology. J Am Acad Dermatol. 1999;40:708–13.

    Article  PubMed  Google Scholar 

  11. Sauermann K, Clemann S, Jaspers S, et al. Age related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo. Skin Res Technol. 2002;8:52–6.

    Article  PubMed  Google Scholar 

  12. Mizukoshi K, Yonekura K, Futagawa M, et al. Changes in dermal papilla structures due to aging in the facial cheek region. Skin Res Technol. 2014;0:1–8.

    Google Scholar 

  13. Neerken S, Lucassen GW, Bisschop MA, et al. Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Opt. 2004;9:274–81.

    Article  PubMed  Google Scholar 

  14. Kawasaki K, Yamanishi K, Yamada H. Age-related morphometric changes of inner structures of the skin assessed by in vivo reflectance confocal microscopy. Int J Dermatol. 2015;54:295–301.

    Article  PubMed  Google Scholar 

  15. Sakamaki T. In vivo confocal microscopy of normal human skin. Jpn J Dermatol. 2002;112:1501–5.

    Google Scholar 

  16. Mizukoshi K, Yonekura K, Goto H, et al. A simple method for assessment of age-related changes in physical properties of facial dermal papilla and fibrous structures. In: 22th IFSCC conference, Rio de Janeiro. 2013, p. 335–46.

    Google Scholar 

  17. Farage MA, Miller KW, Elsner P, et al. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci. 2008;30:87–95.

    Article  CAS  PubMed  Google Scholar 

  18. Takema Y, Yorimoto Y, Kawai M, et al. Age-related changes in the elastic properties and thickness of human facial skin. Br J Dermatol. 1994;131:641–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lavker RM. Cutaneous aging: chronologic versus photaging. In: Gilchrest BA, editor. Photodamage. Cambridge: Blackwell Science; 1995. p. 123–35.

    Google Scholar 

  20. Takema Y, Yorimoto Y, Kawai M. The relationship between age-related changes in the physical properties and development of wrinkles in human facial skin. J Soc Cosmet Chem. 1995;46:163–73.

    Google Scholar 

  21. Kumagai H, Watanabe H, Kozu T. Physiological and morphological changes in facial skin with aging (I). J Soc Cosmet Chem. 1989;23:9–21.

    Article  Google Scholar 

  22. Fink-Puches R, Hofmann-Wellenhof R, Smolle J, et al. Confocal laser scanning microscopy: a new optical microscopic technique for applications in pathology and dermatology. J Cutan Pathol. 1995;22:252–9.

    Article  CAS  PubMed  Google Scholar 

  23. Selim MM, Kelly KM, Nelson JS, et al. Confocal microscopy study of nerves and blood vessels in untreated and treated port wine stains: preliminary observations. Dermatol Surg. 2004;30:892–7.

    PubMed  Google Scholar 

  24. Webb RH. Confocal optical microscopy. Rep Prog Phys. 1996;59:427–71.

    Article  Google Scholar 

  25. Dunn AK, Smithpeter C, Welch AJ, et al. Sources of contrast in confocal reflectance imaging. Appl Opt. 1996;35:3441–6.

    Article  CAS  PubMed  Google Scholar 

  26. Rajadhyaksha M, Grossman M, Esterowitz D, et al. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol. 1995;104:946–52.

    Article  CAS  PubMed  Google Scholar 

  27. Huzaira M, Rius F, Rajadhyaksha M, et al. Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. J Invest Dermatol. 2001;116:846–52.

    Article  CAS  PubMed  Google Scholar 

  28. Yamashita T, Kuwahara T, González S, et al. Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy. J Invest Dermatol. 2005;124:235–40.

    Article  CAS  PubMed  Google Scholar 

  29. Mizukoshi K, Takahashi K. Analysis of the skin surface and inner structure around pores on the face. Skin Res Technol. 2014;20:23–9.

    Article  PubMed  Google Scholar 

  30. Reichelt M, Joubert L, Perrino J, et al. 3D reconstruction of VZV infected cell nuclei and PML nuclear cages by serial section array scanning electron microscopy and electron tomography. PLoS Pathog. 2012;8. doi: 10.1371/journal.ppat.1002740

    Google Scholar 

  31. Sauermann K, Jaspers S, Koop U, et al. Topically applied vitamin C increases the density of dermal papillae in aged human skin. BMC Dermatol. 2004;4:13.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hull MT, Warfel KA. Age-related changes in cutaneous basal lamina: scanning electron microscopic study. J Invest Dermatol. 1983;81:378–80.

    Article  CAS  PubMed  Google Scholar 

  33. Fisher GJ, Kang S, Varani J, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138:1462–70.

    Article  CAS  PubMed  Google Scholar 

  34. Varani J, Spearman D, Perone P, et al. Inhibition of type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro. Am J Pathol. 2001;158:931–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Nishimori Y, Edwards C, Pearse A, et al. Degenerative alterations of dermal collagen fiber bundles in photodamaged human skin and UV-irradiated hairless mouse skin: possible effect on decreasing skin mechanical properties and appearance of wrinkles. J Invest Dermatol. 2001;117:1458–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Tsuchida, K., Yamada, H. (2015). Age-Related Morphometric Changes of Inner Structures of the Skin Assessed by In Vivo Reflectance Confocal Microscopy. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_119-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics