Skip to main content

Viruses with a Single-Stranded DNA Genome

  • Reference work entry
Molecular Virology
  • 6469 Accesses

Abstract

Only a few human and animal pathogenic viruses are known that have a single-stranded DNA genome. The members of the family Parvoviridae have a linear genome, whereas the genome of the members of the family Circoviridae and that of the recently created family Anelloviridae have a circular structure. The members of the family Geminiviridae are also characterized by a circular, single-stranded DNA genome, but they infect only plants. Circoviruses are pathogens in both plants and various animal species (monkeys, swine, poultry, etc.). A circular, single-stranded DNA virus, torque teno virus, was first isolated from humans in 1997. Several types of torque teno virus have been detected and classified into the family Anelloviridae; all persist, like the later discovered torque teno mini viruses and the torque teno midi viruses, in most people and various animals without causing any apparent disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Adair BM (2000) Immunopathogenesis of chicken anemia virus infection. Dev Comp Immunol 24:247–255

    Article  PubMed  CAS  Google Scholar 

  • Allan GM, Ellis JA (2000) Porcine circoviruses: a review. J Vet Diagn Invest 12:3–14

    Article  PubMed  CAS  Google Scholar 

  • Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B (2005) Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA 102:12891–12896

    Article  PubMed  CAS  Google Scholar 

  • Anderson LJ, Hurwitz ES (1988) Human parvovirus B19 and pregnancy. Clin Perinatol 15:273–286

    PubMed  CAS  Google Scholar 

  • Arthur JL, Higgins GD, Davidson GP, Givney RC, Ratcliff RM (2009) A novel bocavirus associated with acute gastroenteritis in Australian children. PLoS Pathog 5:e1000391

    Article  PubMed  Google Scholar 

  • Backendorf C, Visser AE, de Boer AG, Zimmerman R, Visser M, Voskamp P, Zhang YH, Noteborn M (2008) Apoptin: therapeutic potential of an early sensor of carcinogenic transformation. Annu Rev Pharmacol Toxicol 48:143–169

    Article  PubMed  CAS  Google Scholar 

  • Bashir T, Hörlein R, Rommelaere J, Willwand K (2000) Cyclin A activates the DNA polymerase δ-dependent elongation machinery in vitro: a parvovirus DNA replication model. Proc Natl Acad Sci USA 97:5522–5527

    Article  PubMed  CAS  Google Scholar 

  • Batchu RB, Shammas MA, Wang JY, Munshi NC (2001) Dual level inhibition of E2F-1 activity by adeno-associated virus Rep78. J Biol Chem 276:24315–24322

    Article  PubMed  CAS  Google Scholar 

  • Bendinelli M, Pistello M, Maggi F, Fornai C, Freer G, Vatteroni ML (2001) Molecular properties, biology, and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin Microbiol Rev 14:98–113

    Article  PubMed  CAS  Google Scholar 

  • Biagini P (2004) Human circoviruses. Vet Microbiol 98:95–101

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Jonathan MD, Young NS (1993) Erythrocyte P-antigen: cellular receptor for parvovirus B19. Science 262:114–117

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Young NS, Liu JM (1994) Molecular, cellular and clinical aspects of parvovirus B19 infection. Crit Rev Oncol Hematol 16:1–31

    Article  PubMed  CAS  Google Scholar 

  • Chapman MS, Rossman MG (1993) Structure, sequence and function correlations among parvoviruses. Virology 194:491–508

    Article  PubMed  CAS  Google Scholar 

  • Corbau R, Duverger V, Rommelaere J, Nüesch JP (2000) Regulation of MVM NS1 by protein kinase C: impact of mutagenesis at consensus phosphorylation sites on replicative functions and cytopathic effects. Virology 278:151–167

    Article  PubMed  CAS  Google Scholar 

  • Cotmore SF, Tattersall P (2007) Parvoviral host range and cell entry mechanisms. Adv Virus Res 70:183–232

    Article  PubMed  CAS  Google Scholar 

  • Cotmore SF, Gottlieb RL, Tattersall P (2007) Replication initiator protein NS1 of the parvovirus minute virus of mice binds to modular divergent sites distributed throughout duplex viral DNA. J Virol 81:13015–13027

    Article  PubMed  CAS  Google Scholar 

  • Danen-Van Oorschot AA, van der Eb AJ, Noteborn MH (1999) BCL-2 stimulates apoptin-induced apoptosis. Adv Exp Med Biol 457:245–249

    Article  PubMed  CAS  Google Scholar 

  • Davidson I, Shulman LM (2008) Unraveling the puzzle of human anellovirus infections by comparison with avian infections with the chicken anemia virus. Virus Res 137:1–15

    Article  PubMed  CAS  Google Scholar 

  • Dorsch S, Liebisch G, Kaufmann B, von Landenberg P, Hoffmann JH, Drobnik W, Modrow S (2002) The VP1-unique region of parvovirus B19 and its constituent phospholipase A2-like activity. J Virol 76:2014–2018

    Article  PubMed  CAS  Google Scholar 

  • Fryer JF, Delwart E, Bernardin F, Tuke PW, Lukashov VV, Baylis SA (2007) Analysis of two human parvovirus PARV4 genotypes identified in human plasma for fractionation. J Gen Virol 88:2162–2167

    Article  PubMed  CAS  Google Scholar 

  • Gergely P Jr, Perl A, Poór G (2006) Possible pathogenic nature of the recently discovered TT virus: does it play a role in autoimmune rheumatic diseases? Autoimmun Rev 6:5–9

    Article  PubMed  Google Scholar 

  • Hino S, Miyata H (2007) Torque teno virus (TTV): current status. Rev Med Virol 17:45–57

    Article  PubMed  CAS  Google Scholar 

  • Hsu TC, Wu WJ, Chen MC, Tsay GJ (2004) Human parvovirus B19 non-structural protein (NS1) induces apoptosis through mitochondria cell death pathway in COS-7 cells. Scand J Infect Dis 36:570–577

    Article  PubMed  CAS  Google Scholar 

  • Kakkola L, Hedman K, Qiu J, Pintel D, Söderlund-Venermo M (2009) Replication of and protein synthesis by TT viruses. Curr Top Microbiol Immunol 331:53–64

    Article  PubMed  CAS  Google Scholar 

  • Kantola K, Hedman L, Allander T, Jartti T, Lehtinen P, Ruuskanen O, Hedman K, Söderlund-Venermo M (2008) Serodiagnosis of human bocavirus infection. Clin Infect Dis 46:540–546

    Article  PubMed  CAS  Google Scholar 

  • Karalar L, Lindner J, Schimanski S, Kertai M, Segerer H, Modrow S (2010) Prevalence and clinical aspects of human bocavirus infection in children. Clin Microbiol Infect 16:633–639

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann B, Chipman PR, Kostyuchenko VA, Modrow S, Rossmann MG (2008) Visualization of the externalized VP2 N termini of infectious human parvovirus B19. J Virol 82:7306–7312

    Article  PubMed  CAS  Google Scholar 

  • King JA, Dubielzig R, Grimm D, Kleinschmidt JA (2001) DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. EMBO J 20:3282–3291

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt JA, Mohler M, Weindler FW, Heilbronn R (1995) Sequence elements of the adeno-associated virus rep gene required for suppression of herpes-simplex-virus-induced DNA amplification. Virology 206:254–262

    Article  PubMed  CAS  Google Scholar 

  • Kooistra K, Zhang YH, Henriquez NV, Weiss B, Mumberg D, Noteborn MH (2004) TT virus-derived apoptosis-inducing protein induces apoptosis preferentially in hepatocellular carcinoma-derived cells. J Gen Virol 85:1445–1450

    Article  PubMed  CAS  Google Scholar 

  • Kotin RM, Linden RM, Berns KI (1992) Characterization of the preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 11:5071–5078

    PubMed  CAS  Google Scholar 

  • Leary TP, Erker JC, Chalmers ML, Desai SM, Mushahwar IK (1999) Improved detection systems for TT virus reveal high prevalence in humans, non-human primates and farm animals. J Gen Virol 80:2115–2120

    PubMed  CAS  Google Scholar 

  • Lehmann HW, Knöll A, Küster RM, Modrow S (2003a) Frequent infection with a viral pathogen, parvovirus B19, in rheumatic diseases of childhood. Arthritis Rheum 48:1631–1638

    Article  PubMed  Google Scholar 

  • Lehmann HW, von Landenberg P, Modrow S (2003b) Parvovirus B19 infection and autoimmune disease. Autoimmun Rev 2:218–223

    Article  PubMed  Google Scholar 

  • Lin C-L, Kyono W, Tongson J, Chua PK, Easa D, Yanagihara R, Nerurkar VR (2000) Fecal excretion of a novel human circovirus, TT virus in healthy children. Clin Diagn Lab Immunol 7:960–963

    PubMed  CAS  Google Scholar 

  • Lin F, Guan W, Cheng F, Yang N, Pintel D, Qiu J (2008) ELISAs using human bocavirus VP2 virus-like particles for detection of antibodies against HBoV. J Virol Methods 149:110–117

    Article  PubMed  CAS  Google Scholar 

  • Lindner J, Modrow S (2008) Human bocavirus – a novel parvovirus to infect humans. Intervirology 51:116–122

    Article  PubMed  Google Scholar 

  • Lu J, Zhi N, Wong S, Brown KE (2006) Activation of synoviocytes by the secreted phospholipase A2 motif in the VP1-unique region of parvovirus B19 minor capsid protein. J Infect Dis 193:582–590

    Article  PubMed  CAS  Google Scholar 

  • Mankertz A, Hillenbrand B (2001) Replication of porcine circovirus type 1 requires two proteins encoded by the viral rep gene. Virology 279:429–438

    Article  PubMed  CAS  Google Scholar 

  • Mankertz A, Persson F, Mankertz J, Blaess G, Buhk HJ (1997) Mapping and characterization of the origin of DNA replication of porcine circovirus. J Virol 71:2562–2566

    PubMed  CAS  Google Scholar 

  • Manteufel J, Truyen U (2008) Animal bocaviruses: a brief review. Intervirology 51:328–334

    Article  PubMed  CAS  Google Scholar 

  • Miller MM, Schat KA (2004) Chicken infectious anemia virus: an example of the ultimate host-parasite relationship. Avian Dis 48:734–745

    Article  PubMed  Google Scholar 

  • Miyata H, Tsunoda H, Kazi A, Yamada A, Ali Khan M, Murakami J, Kamahora T, Shiraki K, Hino S (1999) Identification of a novel GC-rich 113 nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus. J Virol 73:3582–3586

    PubMed  CAS  Google Scholar 

  • Morey A, Ferguson D, Fleming KA (1993) Ultrastructural features of fetal erythroid precursors infected with parvovirus B19 in vitro: evidence of cell death by apoptosis. J Pathol 169:213–220

    Article  PubMed  CAS  Google Scholar 

  • Naides SJ, Karetnyi YV, Cooling LLW, Mark RS, Langnas AN (1996) Human parvovirus B19 infection and hepatitis. Lancet 347:1563–1564

    Article  PubMed  CAS  Google Scholar 

  • Nakashima A, Morita E, Saito S, Sugamura K (2004) Human Parvovirus B19 nonstructural protein transactivates the p21/WAF1 through Sp1. Virology 329:493–504

    Article  PubMed  CAS  Google Scholar 

  • Naoumov NV (2000) TT virus – highly prevalent, but still in search of a disease. J Hepatol 33:157–159

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M (1997) A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun 241:92–97

    Article  PubMed  CAS  Google Scholar 

  • Norja P, Hokynar K, Aaltonen LM, Chen R, Ranki A, Partio EK, Kiviluoto O, Davidkin I, Leivo T, Eis-Hübinger AM, Schneider B, Fischer HP, Tolba R, Vapalahti O, Vaheri A, Söderlund-Venermo M, Hedman K (2006) Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc Natl Acad Sci USA 103:7450–7453

    Article  PubMed  CAS  Google Scholar 

  • Nüesch JP, Rommelaere J (2007) A viral adaptor protein modulating casein kinase II activity induces cytopathic effects in permissive cells. Proc Natl Acad Sci USA 104:12482–12487

    Article  PubMed  Google Scholar 

  • Okamoto H, Fukuda M, Tawara M, Nishizawa T, Itoh Y, Hayasaka I, Tsuda F, Tanaka T, Miyakawa Y, Mayumi M (2000) Species-specific TT viruses and cross-species infection in non-human primates. J Virol 74:1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Parker JS, Murphy WJ, Wang D, O’Brien SJ, Parrish CR (2001) Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J Virol 75:3896–3902

    Article  PubMed  CAS  Google Scholar 

  • Parrish CR, Aquadro CF, Strassheim ML, Evermann JF, Sgro JY, Mohammed HO (1991) Rapid antigenic-type replacement and DNA sequence evolution of canine parvovirus. J Virol 65:6544–6552

    PubMed  CAS  Google Scholar 

  • Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 5:71–77

    Article  PubMed  CAS  Google Scholar 

  • Qiu J, Brown KE (1999) A 110-kDa nuclear shuttle protein, nucleolin, specifically binds to adeno-associated virus type 2 (AAV-2) capsid. Virology 257:373–382

    Article  PubMed  CAS  Google Scholar 

  • Röhrer C, Gärtner B, Sauerbrei A, Böhm S, Hottenträger B, Raab U, Thierfelder W, Wutzler P, Modrow S (2008) Seroprevalence of parvovirus B19 in the German population. Epidemiol Infect 16:1–12

    Google Scholar 

  • Rovira A, Balasch M, Segales J, Garcia L, Plana-Duran J, Rosell C, Ellerbrok H, Mankertz A, Domingo M (2002) Experimental inoculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2. J Virol 76:3232–3239

    Article  PubMed  CAS  Google Scholar 

  • Saudan P, Vlach J, Beard P (2000) Inhibition of S-phase progression by adeno-associated virus Rep78 protein is mediated by hypophosphorylated pRb. EMBO J 19:4351–4361

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Afione S, Kotin RM (2000) Adeno-associated virus type 2 Rep78 induces apoptosis through caspase activation independently of p53. J Virol 74:9441–9450

    Article  PubMed  CAS  Google Scholar 

  • Shackelton LA, Parrish CR, Truyen U, Holmes EC (2005) High rate of viral evolution associated with the emergence of carnivore parvovirus. Proc Natl Acad Sci USA 102:379–384

    Article  PubMed  CAS  Google Scholar 

  • Smith RH, Kotin RM (2000) An adeno-associated virus (AAV) initiator protein, Rep78, catalyzes the cleavage and ligation of single-strand AAV ori DNA. J Virol 74:3122–3129

    Article  PubMed  CAS  Google Scholar 

  • Steinel A, Parrish CR, Bloom ME, Truyen U (2001) Parvovirus infections in wild carnivores. J Wildl Dis 37:594–607

    PubMed  CAS  Google Scholar 

  • Summerford C, Bartlett JS, Samulski RJ (1999) AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 5:78–82

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Hijikata M, Samokhvalov EI, Mishiro S (2000) Full or near full length nucleotide sequences of TT virus variants (types SANBAN and YONBAN) and the TT virus-like mini virus. Intervirology 43:119–123

    Article  PubMed  CAS  Google Scholar 

  • Takasawa N, Munakata Y, Ishii KK, Takahashi Y, Takahashi M, Fu Y, Ishii T, Fujii H, Saito T, Takano H, Noda T, Suzuki M, Nose M, Zolla-Pazner S, Sasaki T (2004) Human parvovirus B19 transgenic mice become susceptible to polyarthritis. J Immunol 173:4675–4683

    PubMed  CAS  Google Scholar 

  • Thacker TC, Johnson FB (1998) Binding of bovine parvovirus to erythrocyte membrane sialylglycoproteins. J Gen Virol 79:2163–2169

    PubMed  CAS  Google Scholar 

  • Todd D, McNulty MS, Adair BM, Allan GM (2001) Animal circoviruses. Adv Virus Res 57:1–70

    Article  PubMed  CAS  Google Scholar 

  • Truyen U, Gruenberg A, Chang SF, Obermaier B, Veijalainen P, Parrish CR (1995) Evolution of the feline-subgroup parvoviruses and the control of canine host range in vivo. J Virol 69:4702–4710

    PubMed  CAS  Google Scholar 

  • Truyen U, Everman JF, Vieler E, Parrish CR (1996) Evolution of canine parvovirus involved loss and gain of feline host range. Virology 215:186–189

    Article  PubMed  CAS  Google Scholar 

  • Tsao J, Chapman MS, Agbandja M, Keller W, Smith K, Wu H, Luo M, Smith TM, Rossman M, Compans RW, Parrish CR (1991) The three-dimensional structure of canine parvovirus and its functional implications. Science 251:1456–1464

    Article  PubMed  CAS  Google Scholar 

  • Tzang BS, Lee YJ, Yang TP, Tsay GJ, Shi JY, Tsai CC, Hsu TC (2007) Induction of antiphospholipid antibodies and antiphospholipid syndrome-like autoimmunity in naive mice with antibody against human parvovirus B19 VP1 unique region protein. Clin Chim Acta 382:31–36

    Article  PubMed  CAS  Google Scholar 

  • Verschoor EJ, Langenhuijzen S, Heeney JL (1999) TT viruses (TTV) of non-human primates and their relationship to the human TTV genotypes. J Gen Virol 80:2491–2499

    PubMed  CAS  Google Scholar 

  • von Landenberg P, Lehmann HW, Knöll A, Dorsch S, Modrow S (2003) Antiphospholipid antibodies in pediatric and adult patients with rheumatic disease are associated with parvovirus B19 infection. Arthritis Rheum 48:1939–1947

    Article  Google Scholar 

  • von Poblotzki A, Hemauer A, Gigler A, Puchhammer-Stöcke E, Heinz F-X, Pont J, Laczika K, Wolf H, Modrow S (1995) Antibodies to the nonstructural protein of parvovirus B19 in persistently infected patients: implications for pathogenesis. J Infect Dis 172:1356–1359

    Article  Google Scholar 

  • Walters RA, Yi SMP, Keshavjee S, Brown KE, Welsh MJ, Chorioni JA, Zabner J (2001) Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem 276:20610–20616

    Article  PubMed  CAS  Google Scholar 

  • Weger S, Wendland M, Kleinschmidt JA, Heilbronn R (1999) The adeno-associated virus type 2 regulatory proteins rep78 and rep68 interact with the transcriptional coactivator PC4. J Virol 73:260–269

    PubMed  CAS  Google Scholar 

  • Wonderling RS, Kyostio SR, Owens RA (1995) A maltose-binding protein/adeno-associated virus rep68 fusion protein has DNA-RNA helicase and ATPase activity. J Virol 69:3542–3548

    PubMed  CAS  Google Scholar 

  • Young SM Jr, McCarty DM, Degtyareva N, Samulski RJ (2000) Roles of adeno-associated virus Rep protein and human chromosome 19 in site-specific recombination. J Virol 74:3953–3966

    Article  PubMed  CAS  Google Scholar 

  • Zhi N, Mills IP, Lu J, Wong S, Filippone C, Brown KE (2006) Molecular and functional analyses of a human parvovirus B19 infectious clone demonstrates essential roles for NS1, VP1, and the 11-kilodalton protein in virus replication and infectivity. J Virol 80:5941–5950

    Article  PubMed  CAS  Google Scholar 

  • zur Hausen H, de Villiers EM (2009) TT viruses: oncogenic or tumorsuppressive properties? Curr Top Microbiol Immunol 331:109–116

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Modrow .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Modrow, S., Falke, D., Truyen, U., Schätzl, H. (2013). Viruses with a Single-Stranded DNA Genome. In: Molecular Virology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20718-1_20

Download citation

Publish with us

Policies and ethics