Skip to main content

Hydrodynamic Modeling of Carbohydrate Polymers

  • Reference work entry
Encyclopedia of Biophysics

Synonyms

Hydrodynamics of macromolecules

Introduction

Polysaccharides, mucins, and other large molecular weight glycoconjugates tend to exhibit quite different hydrodynamic properties compared with proteins. This is not only because of their general larger size (reaching to molar masses >50 × 106 g/mol) for some polysaccharides like amylopectin, their greater non-ideality (through molecular co-exclusion and charge effects – as represented by virial coefficients), and greater diversity of shapes and flexibilities. The primary structure of carbohydrate polymers is not coded by a genetic template; so they are also polydisperse (as represented by their molecular weight distribution or composition distribution). Nucleic acids are also a class of glycoconjugate (poly-deoxyribose or poly-ribose backbones linked by phosphor-diester instead of glycosidic bonds).

This means that compared with proteins, the grammar of enquiry is somewhat different: We can use hydrodynamic methods to ascertain the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bohdanecky M. New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers. Macromolecules. 1983;16:1483–93.

    CAS  Google Scholar 

  • Burchard W. Static and dynamic light scattering approaches to structure determination of biopolymers. In: Harding SE, Sattelle DB, Bloomfield VA, editors. Laser light scattering in biochemistry. Cambridge: Royal Society of Chemistry; 1992. p. 3–22.

    Google Scholar 

  • Burchard W, Schmitt M, Stockmayer WH. Influence of hydrodynamic pre-averaging on quasi-elastic scattering from flexible linear and star-branched macromolecules. Macromolecules. 1980;13:1265–72.

    CAS  Google Scholar 

  • Bushin SV, Tsvetkov VN, Lysenko YB, Emel’yanov VN. Conformational properties and rigidity of molecules of ladder polyphenylsiloxane in solutions according the data of sedimentation-diffusion analysis and viscometry. Vysokomol Soedin A. 1981;23:2494–503.

    CAS  Google Scholar 

  • Fujita H. Mathematical theory of sedimentation analysis. New York: Academic; 1962. p. 182–92.

    Google Scholar 

  • Harding SE. The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog Biophys Mol Biol. 1997;68:207–62.

    CAS  PubMed  Google Scholar 

  • Harding SE, Schuck P, Abdelhameed AS, Adams G, Kok MS, Morris GA. Extended Fujita approach to the molecular weight distribution of polysaccharides and other polymeric systems. Methods. 2011;54:136–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hearst JE. Rotatory diffusion constants of stiff-chain macromolecules. J Chem Phys. 1963;38:1062–5.

    CAS  Google Scholar 

  • Hearst JE, Stockmayer WH. Sedimentation constants of broken chains and wormlike coils. J Chem Phys. 1962;37:1425–33.

    CAS  Google Scholar 

  • Morris GA, Ralet M-C, Bonnin E, Thibault J-F, Harding SE. Physical characterisation of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin. Carbohydr Polym. 2010;82:1161–7.

    CAS  Google Scholar 

  • Ortega A, de la Torre JG. Equivalent radii and ratios of radii from solution properties as indicators of macromolecular conformation, shape, and flexibility. Biomacromolecules. 2007;8:2464–75.

    CAS  PubMed  Google Scholar 

  • Pavlov GM, Harding SE, Rowe AJ. Normalized scaling relations as a natural classification of linear macromolecules according to size. Prog Colloid Polym Sci. 1999;113:76–80.

    CAS  Google Scholar 

  • Smidsrød O, Andresen I-L. Biopolymerkjemi. Trondheim: Tapir Press; 1979.

    Google Scholar 

  • Stockmayer WH, Fixman MJ. On the estimation of unperturbed dimensions from intrinsic viscositiesxcin. J Polym Sci C. 1963;1:137–41.

    Google Scholar 

  • Tanford C. Physical chemistry of macromolecules. New York: Wiley; 1961.

    Google Scholar 

  • Tombs MP, Harding SE. An introduction to polysaccharide biotechnology. London: Taylor and Francis; 1998. p. 14–20.

    Google Scholar 

  • Tsvetkov VN, Eskin V, Frenkel S. Structure of macromolecules in solution. London: Butterworths; 1970.

    Google Scholar 

  • Wales M, van Holde KE. The concentration dependence of the sedimentation constants of flexible macromolecules. J Polym Sci. 1954;14:81–6.

    CAS  Google Scholar 

  • Yamakawa H, Fujii M. Translational friction coefficient of wormlike chains. Macromolecules. 1973;6:407–15.

    CAS  Google Scholar 

  • Zimm BH, Stockmayer WH. The dimensions of chain molecules containing branches and rings. J Chem Phys. 1949;17:1301–14.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon A. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 European Biophysical Societies' Association (EBSA)

About this entry

Cite this entry

Morris, G.A., Harding, S.E. (2013). Hydrodynamic Modeling of Carbohydrate Polymers. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_300

Download citation

Publish with us

Policies and ethics