Skip to main content

Mechanical Ventilation: HFV

  • Reference work entry
Textbook of Clinical Pediatrics

Basic Principles

Like with any other mode of mechanical ventilation, the basic goal of high-frequency ventilation (HFV) is to deliver oxygen to and clear carbon dioxide from the blood, while minimizing ventilator-induced lung injury (VILI) as much as possible. In order to achieve this goal, a constant pressure, often referred to as mean airway pressure or continuous distending pressure (CDP), is applied to the lungs. This CDP stabilizes airways and alveoli/saccules. Superimposed on this CDP are small pressure swings, usually at a frequency of 6–15 Hz or 240–900 cycles/min, resulting in small volume changes of approximately 1–3 ml/kg. Despite the fact that these volume changes are sometimes smaller than the anatomical dead space, HFV is very efficient in clearing carbon dioxide from the lungs. Some of the mechanisms responsible for adequate gas exchange during HFV are coaxial flow, asymmetric velocity profiles, the pendelluft effect and molecular diffusion.

High-Frequency Modalities

Ther...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bohn D (2002) Congenital diaphragmatic hernia. Am J Respir Crit Care Med 166:911–915

    Article  PubMed  Google Scholar 

  • Cacciari A, Ruggeri G, Mordenti M, Ceccarelli PL, Baccarini E, Pigna A, Gentili A (2001) High-frequency oscillatory ventilation versus conventional mechanical ventilation in congenital diaphragmatic hernia. Eur J Pediatr Surg 11:3–7

    Article  PubMed  CAS  Google Scholar 

  • Clark RH, Gerstmann DR, Null DM, Yoder BA, Cornish JD, Glasier CM, Ackerman NB, Bell RE, Delemos RA (1986) Pulmonary interstitial emphysema treated by high-frequency oscillatory ventilation. Crit Care Med 14:926–930

    Article  PubMed  CAS  Google Scholar 

  • Clark RH, Yoder BA, Sell MS (1994) Prospective, randomized comparison of high-frequency oscillation and conventional ventilation in candidates for extracorporeal membrane oxygenation. J Pediatr 124:447–454

    Article  PubMed  CAS  Google Scholar 

  • Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL, Shoemaker CT (2002) High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N Engl J Med 347:643–652

    Article  PubMed  Google Scholar 

  • De Jaegere A, van Veenendaal MB, Michiels A, van Kaam AH (2006) Lung recruitment using oxygenation during open lung high-frequency ventilation in preterm infants. Am J Respir Crit Care Med 174:639–645

    Article  PubMed  Google Scholar 

  • de Waal K, Evans N, van der Lee J, van Kaam A (2009) Effect of lung recruitment on pulmonary, systemic, and ductal blood flow in preterm infants. J Pediatr 154:651–655

    Article  PubMed  Google Scholar 

  • Desfrere L, Jarreau PH, Dommergues M, Brunhes A, Hubert P, Nihoul-Fekete C, Mussat P, Moriette G (2000) Impact of delayed repair and elective high-frequency oscillatory ventilation on survival of antenatally diagnosed congenital diaphragmatic hernia: first application of these strategies in the more “severe” subgroup of antenatally diagnosed newborns. Intensive Care Med 26:934–941

    Article  PubMed  CAS  Google Scholar 

  • dos Santos CC, Slutsky AS (2001) Overview of high-frequency ventilation modes, clinical rationale, and gas transport mechanisms. Respir Care Clin N Am 7:549–575

    Article  PubMed  CAS  Google Scholar 

  • Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    Article  PubMed  CAS  Google Scholar 

  • Henderson-Smart DJ, Cools F, Bhuta T, Offringa M (2007) Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev CD000104

    Google Scholar 

  • Hickling KG (2001) Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163:69–78

    Article  PubMed  CAS  Google Scholar 

  • Johnson AH, Peacock JL, Greenough A, Marlow N, Limb ES, Marston L, Calvert SA (2002) High-frequency oscillatory ventilation for the prevention of chronic lung disease of prematurity. N Engl J Med 347:633–642

    Article  PubMed  Google Scholar 

  • Keszler M, Donn S, Buciarelli R et al (1991) Multi-center controlled trial comparing high-frequency jet ventilation and conventional ventilation in newborn infants with pulmonary interstitial emphysema. J Pediatr 119:85–93

    Article  PubMed  CAS  Google Scholar 

  • Keszler M, Modanlou HD, Brudno DS et al (1997) Multi-center controlled clinical trial of high-frequency jet ventilation in preterm infants with uncomplicated respiratory distress syndrome. Pediatrics 100:593–599

    Article  PubMed  CAS  Google Scholar 

  • Kinsella JP, Truog WE, Walsh WF, Goldberg RN, Bancalari E, Mayock DE, Redding GJ, Delemos RA, Sardesai S, McCurnin DC, Moreland SG, Cutter GR, Abman SH (1997) Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J Pediatr 131:55–62

    Article  PubMed  CAS  Google Scholar 

  • Mammel MC, Ophoven JP, Lewallen PK, Gordon MJ, Sutton MC, Boros SJ (1986) High-frequency ventilation and tracheal injuries. Pediatrics 77:608–613

    PubMed  CAS  Google Scholar 

  • McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Meredith KS, Delemos RA, Coalson JJ, King RJ, Gerstmann DR, Kumar R, Kuehl TJ, Winter DC, Taylor A, Clark RH (1989) Role of lung injury in the pathogenesis of hyaline membrane disease in premature baboons. J Appl Physiol 66:2150–2158

    PubMed  CAS  Google Scholar 

  • Moriette G, Paris-Llado J, Walti H, Escande B, Magny JF, Cambonie G, Thiriez G, Cantagrel S, Lacaze-Masmonteil T, Storme L, Blanc T, Liet JM, Andre C, Salanave B, Breart G (2001) Prospective randomized multicenter comparison of high-frequency oscillatory ventilation and conventional ventilation in preterm infants of less than 30 weeks with respiratory distress syndrome. Pediatrics 107:363–372

    Article  PubMed  CAS  Google Scholar 

  • The HIFI Study Group (1989) High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. N Engl J Med 320:88–93

    Article  Google Scholar 

  • van Kaam AH, Rimensberger PC (2007) Lung-protective ventilation strategies in neonatology: what do we know–what do we need to know? Crit Care Med 35:925–931

    Article  PubMed  Google Scholar 

  • van Kaam AH, Haitsma JJ, De Jaegere A, Van Aalderen WM, Kok JH, Lachmann B (2004) Open lung ventilation improves gas exchange and attenuates secondary lung injury in a piglet model of meconium aspiration. Crit Care Med 32:443–449

    Article  PubMed  Google Scholar 

  • Wiswell TE, Clark RH, Null DM, Kuehl TJ, Delemos RA, Coalson JJ (1988) Tracheal and bronchial injury in high-frequency oscillatory ventilation and high-frequency flow interruption compared with conventional positive-pressure ventilation. J Pediatr 112:249–256

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton H. van Kaam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

van Kaam, A.H., Keszler, M. (2012). Mechanical Ventilation: HFV. In: Elzouki, A.Y., Harfi, H.A., Nazer, H.M., Stapleton, F.B., Oh, W., Whitley, R.J. (eds) Textbook of Clinical Pediatrics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02202-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02202-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02201-2

  • Online ISBN: 978-3-642-02202-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics