Skip to main content

Aging of Epidermal Stem Cells

  • Reference work entry
Textbook of Aging Skin

Abstract

Advances in aging biology indicate that stem cells have a crucial role in organ maturation and aging. Studies have demonstrated molecular and biochemical changes in tissue-resident progenitor cells and their microenvironments during chronological aging of tissues such as the heart [1], brain [2], and hematopoietic system [3]. In this chapter knowledge in the field of aging and stem cells derived from tissues other than the epidermis is reviewed, and the challenges of studying aging stem cells discussed. Subsequently, epidermal stem cells are reviewed and changes in progenitor populations of the epidermis that occur with age discussed. Finally, the body of knowledge specifically related to the aging of epidermal stem cells and the implications of stem cell aging for carcinogenesis are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anversa P, et al. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation. 2006;113:1451–1463.

    PubMed  Google Scholar 

  2. Galvan V, Jin K. Neurogenesis in the aging brain. Clin Interv Aging. 2007;2:605–610.

    PubMed  Google Scholar 

  3. Rossi DJ, Bryder D, Weissman IL. Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol. 2007;42:385–390.

    CAS  PubMed  Google Scholar 

  4. de Haan G, Nijhof W, Van Zant G. Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood. 1997;89:1543–1550.

    CAS  PubMed  Google Scholar 

  5. Morrison SJ, et al. The aging of hematopoietic stem cells. Nat Med. 1996;2:1011–1016.

    CAS  PubMed  Google Scholar 

  6. Gibson MC, Schultz E. Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve. 1983;6:574–580.

    CAS  PubMed  Google Scholar 

  7. Conboy IM, et al. Notch-mediated restoration of regenerative potential to aged muscle. Science. 2003;302:1575–1577.

    CAS  PubMed  Google Scholar 

  8. Brack AS, Bildsoe H, Hughes SM. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci. 2005;118:4813–4821.

    CAS  PubMed  Google Scholar 

  9. Rando TA. Stem cells, ageing and the quest for immortality. Nature. 2006;441:1080–1086.

    CAS  PubMed  Google Scholar 

  10. Stern MM, Bickenbach JR. Epidermal stem cells are resistant to cellular aging. Aging Cell. 2007;6:439–452.

    CAS  PubMed  Google Scholar 

  11. Rossi DJ, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA. 2005;102:9194–9199.

    CAS  PubMed  Google Scholar 

  12. Wallenfang MR. Aging within the Stem Cell niche. Dev Cell. 2007;13:603–604.

    CAS  PubMed  Google Scholar 

  13. Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science. 2000;290:328–330.

    CAS  PubMed  Google Scholar 

  14. Boyle M, et al. Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell. 2007;1:470–478.

    CAS  PubMed  Google Scholar 

  15. Ryu BY, et al. Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells. 2006;24:1505–1511.

    CAS  PubMed  Google Scholar 

  16. Carlson BM, Faulkner JA. Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol. 1989;256:C1262–C1266.

    CAS  PubMed  Google Scholar 

  17. Mezzogiorno A, et al. Paracrine stimulation of senescent satellite cell proliferation by factors released by muscle or myotubes from young mice. Mech Ageing Dev. 1993;70:35–44.

    CAS  PubMed  Google Scholar 

  18. Gopinath SD, Rando TA. Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell. 2008;7:590–598.

    CAS  PubMed  Google Scholar 

  19. Conboy IM, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760–764.

    CAS  PubMed  Google Scholar 

  20. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110:1001–1020.

    CAS  PubMed  Google Scholar 

  21. Lynch MD. Selective pressure for a decreased rate of asymmetrical divisions within stem cell niches may contribute to age-related alterations in stem cell function. Rejuvenation Res. 2004;7:111–125.

    CAS  PubMed  Google Scholar 

  22. Meineke FA, Potten CS, Loeffler M. Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif. 2001;34:253–266.

    CAS  PubMed  Google Scholar 

  23. Holt PR, Yeh KY, Kotler DP. Altered controls of proliferation in proximal small intestine of the senescent rat. Proc Natl Acad Sci USA. 1988;85:2771–2775.

    CAS  PubMed  Google Scholar 

  24. Walford RL. Letter: when is a mouse “old”? J Immunol. 1976;117:352.

    CAS  PubMed  Google Scholar 

  25. Miller RA, Nadon NL. Principles of animal use for gerontological research. J Gerontol A Biol Sci Med Sci. 2000;55:B117–B123.

    CAS  PubMed  Google Scholar 

  26. Hocking TD. The physiology of human aging. www.ocf.berkeley.edu/∼tdhock/science/HumanAging.pdf. 2005.

  27. Rattan SI. Increased molecular damage and heterogeneity as the basis of aging. Biol Chem. 2008;389:267–272.

    CAS  PubMed  Google Scholar 

  28. Uchida N, et al. Heterogeneity of hematopoietic stem cells. Curr Opin Immunol. 1993;5:177–184.

    CAS  PubMed  Google Scholar 

  29. Potten CS. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int Rev Cytol. 1981;69:271–318.

    CAS  PubMed  Google Scholar 

  30. Taylor G, et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102:451–461.

    CAS  PubMed  Google Scholar 

  31. Oshima H, et al. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104:233–245.

    CAS  PubMed  Google Scholar 

  32. Ghadially R. In search of the elusive epidermal stem cell. In: The Promises and Challenges of Regenerative Medicine. Heidelberg: Springer, 2005. p. 45–62.

    Google Scholar 

  33. Schneider TE, et al. Measuring stem cell frequency in epidermis: a quantitative in vivo functional assay for long-term repopulating cells. Proc Natl Acad Sci USA. 2003;100:11412–11417.

    CAS  PubMed  Google Scholar 

  34. Kaur P. Interfollicular epidermal stem cells: identification, challenges, potential. J Invest Dermatol. 2006;126:1450–1458.

    CAS  PubMed  Google Scholar 

  35. Nishimura EK, et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002;416:854–860.

    CAS  PubMed  Google Scholar 

  36. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994;1:661–673.

    CAS  PubMed  Google Scholar 

  37. Terunuma A, et al. Side population keratinocytes resembling bone marrow side population stem cells are distinct from label-retaining keratinocyte stem cells. J Invest Dermatol. 2003;121:1095–1103.

    CAS  PubMed  Google Scholar 

  38. Triel C, et al. Side population cells in human and mouse epidermis lack stem cell characteristics. Exp Cell Res. 2004;295:79–90.

    CAS  PubMed  Google Scholar 

  39. Li A, Simmons PJ, Kaur P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA. 1998;95:3902–3907.

    CAS  PubMed  Google Scholar 

  40. Terunuma A, et al. Stem cell activity of human side population and alpha6 integrin-bright keratinocytes defined by a quantitative in vivo assay. Stem Cells. 2007;25:664–669.

    CAS  PubMed  Google Scholar 

  41. Strachan LR, et al. Rapid adhesion to collagen isolates murine keratinocytes with limited long-term repopulating ability in vivo despite high clonogenicity in vitro. Stem Cells. 2008;26:235–243.

    CAS  PubMed  Google Scholar 

  42. Bickenbach JR. Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res. 1981;60 (Spec No C):1611–1620.

    PubMed  Google Scholar 

  43. Yang A, et al. P63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398:714–718.

    CAS  PubMed  Google Scholar 

  44. Stasiak PC, et al. Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins. J Invest Dermatol. 1989;92:707–716.

    CAS  PubMed  Google Scholar 

  45. Lyle S, et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J Cell Sci. 1998;111(Pt 21):3179–3188.

    CAS  PubMed  Google Scholar 

  46. Zhu AJ, Watt FM. Beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development. 1999;126:2285–2298.

    CAS  PubMed  Google Scholar 

  47. Lin KK, Goodell MA. Purification of hematopoietic stem cells using the side population. Methods Enzymol. 2006;420:255–264.

    CAS  PubMed  Google Scholar 

  48. Uezumi A, et al. Functional heterogeneity of side population cells in skeletal muscle. Biochem Biophys Res Commun. 2006;341:864–873.

    CAS  PubMed  Google Scholar 

  49. Kohno K, et al. The direct activation of human multidrug resistance gene (MDR1) by anticancer agents. Biochem Biophys Res Commun. 1989;165:1415–1421.

    CAS  PubMed  Google Scholar 

  50. Sleeman MA, Watson JD, Murison JG. Neonatal murine epidermal cells express a functional multidrug-resistant pump. J Invest Dermatol. 2000;115:19–23.

    CAS  PubMed  Google Scholar 

  51. Dunnwald M, et al. Isolating a pure population of epidermal stem cells for use in tissue engineering. Exp Dermatol. 2001;10:45–54.

    CAS  PubMed  Google Scholar 

  52. Yano S, et al. Characterization and localization of side population cells in mouse skin. Stem Cells. 2005;23:834–841.

    CAS  PubMed  Google Scholar 

  53. Tani H, Morris RJ, Kaur P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA. 2000;97:10960–10965.

    CAS  PubMed  Google Scholar 

  54. Kim DS, et al. Isolation of human epidermal stem cells by adherence and the reconstruction of skin equivalents. Cell Mol Life Sci. 2004;61:2774–2781.

    CAS  PubMed  Google Scholar 

  55. Watt FM. Studies with cultured human epidermal keratinocytes: potential relevance to corneal wound healing. Eye. 1994;8(Pt 2):161–162.

    PubMed  Google Scholar 

  56. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell. 1995;80:83–93.

    CAS  PubMed  Google Scholar 

  57. Kaur P, et al. Keratinocyte stem cell assays: an evolving science. J Investig Dermatol Symp Proc. 2004;9:238–247.

    CAS  PubMed  Google Scholar 

  58. Kolodka TM, Garlick JA, Taichman LB. Evidence for keratinocyte stem cells in vitro: long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes. Proc Natl Acad Sci USA. 1998;95:4356–4361.

    CAS  PubMed  Google Scholar 

  59. Cerimele D, Celleno L, Serri F. Physiological changes in ageing skin. Br J Dermatol. 1990;122(Suppl 35):13–20.

    PubMed  Google Scholar 

  60. Gerstein AD, et al. Wound healing and aging. Dermatol Clin. 1993;11:749–757.

    CAS  PubMed  Google Scholar 

  61. Gilchrest BA. In vitro assessment of keratinocyte aging. J Invest Dermatol. 1983;81:184s–189s.

    CAS  PubMed  Google Scholar 

  62. Grove GL. Age-related differences in healing of superficial skin wounds in humans. Arch Dermatol Res. 1982;272:381–385.

    CAS  PubMed  Google Scholar 

  63. Grove GL, Kligman AM. Age-associated changes in human epidermal cell renewal. J Gerontol. 1983;38:137–142.

    CAS  PubMed  Google Scholar 

  64. Haratake A, et al. Intrinsically aged epidermis displays diminished UVB-induced alterations in barrier function associated with decreased proliferation. J Invest Dermatol. 1997;108:319–323.

    CAS  PubMed  Google Scholar 

  65. Leyden JJ, et al. Age-related differences in the rate of desquamation of skin surface cells [proceedings]. Adv Exp Med Biol. 1978;97:297–298.

    CAS  PubMed  Google Scholar 

  66. Roberts D, Marks R. The determination of regional and age variations in the rate of desquamation: a comparison of four techniques. J Invest Dermatol. 1980;74:13–16.

    CAS  PubMed  Google Scholar 

  67. Ito M, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11:1351–1354.

    CAS  PubMed  Google Scholar 

  68. Nouy PLD. Biological Time. New York: The Macmillan Company, 1937.

    Google Scholar 

  69. Rheinwald JG, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature. 1977;265:421–424.

    CAS  PubMed  Google Scholar 

  70. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6:331–343.

    CAS  PubMed  Google Scholar 

  71. Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA. 1987;84:2302–2306.

    CAS  PubMed  Google Scholar 

  72. Dunnwald M, et al. Mouse epidermal stem cells proceed through the cell cycle. J Cell Physiol. 2003;195:194–201.

    CAS  PubMed  Google Scholar 

  73. Youn SW, et al. Cellular senescence induced loss of stem cell proportion in the skin in vitro. J Dermatol Sci. 2004;35:113–123.

    CAS  PubMed  Google Scholar 

  74. Liang L, et al. As epidermal stem cells age they do not substantially change their characteristics. J Investig Dermatol Symp Proc. 2004;9:229–237.

    CAS  PubMed  Google Scholar 

  75. Giangreco A, et al. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell. 2008;7:250–259.

    CAS  PubMed  Google Scholar 

  76. Harrison DE, Astle CM, Stone M. Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. J Immunol. 1989;142:3833–3840.

    CAS  PubMed  Google Scholar 

  77. Sudo K, et al. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 2000;192:1273–1280.

    CAS  PubMed  Google Scholar 

  78. Charruyer A, et al. Transit-amplifying cell frequency and cell cycle kinetics are altered in aged epidermis. J Invest Dermatol. 2009; 129(11):2574–2583.

    Google Scholar 

  79. Gniadecki R, Hansen M, Wulf HC. Resistance of senescent keratinocytes to UV-induced apoptosis. Cell Mol Biol (Noisy-le-grand). 2000;46:121–127.

    CAS  Google Scholar 

  80. Matta JL, et al. DNA repair and nonmelanoma skin cancer in Puerto Rican populations. J Am Acad Dermatol. 2003;49:433–439.

    PubMed  Google Scholar 

  81. Bregegere F, et al. Cellular senescence in human keratinocytes: unchanged proteolytic capacity and increased protein load. Exp Gerontol. 2003;38:619–629.

    CAS  PubMed  Google Scholar 

  82. Wulf HC, et al. Skin aging and natural photoprotection. Micron. 2004;35:185–191.

    CAS  PubMed  Google Scholar 

  83. Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell. 2006;124:1111–1115.

    CAS  PubMed  Google Scholar 

  84. Rossi DJ, Jamieson CH, Weissman IL. Stems cells and the pathways to aging and cancer. Cell. 2008;132:681–696.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruby Ghadially .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Charruyer, A., Ghadially, R. (2010). Aging of Epidermal Stem Cells. In: Farage, M.A., Miller, K.W., Maibach, H.I. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89656-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89656-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89655-5

  • Online ISBN: 978-3-540-89656-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics