Skip to main content

N1 Heat Transfer in Regenerators

  • Reference work entry
  • First Online:
VDI Heat Atlas

Part of the book series: VDI-Buch ((VDI-BUCH))

  • 25k Accesses

1 Operating Principle of Regenerators

The term “regenerator” denotes a heat transfer device which comprises a packing through which two different gases are alternately passed. The amount of heat to be transferred is temporarily stored in this heat-storing packing through which the gas stream is directed, and which is also variously referred to as the regenerator’s checker (work), matrix, grating, bed, heat store, or storage mass. The regenerative heat transfer involves locally non-steady-state subprocesses which are generally referred to as “heating” or “cooling.” Depending on the viewpoint, these terms apply either to the storage mass or to the different gas flowsFootnote 1.

The function of a regenerator is illustrated in Fig. 1which, by way of example, shows a regenerator pair as used in cryogenic applications. The cylindrical tanks contain heat-storing masses which may be porous, interspersed with passages, or of a checkerwork structure. The two different gases are alternately...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Deceased

7 Bibliography

  1. Hausen H (1976) Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom. 2. Aufl. Springer-Verl, Berlin

    Book  Google Scholar 

  2. Hausen H (1970) Berechnung der Wärmeübertragung in Regeneratoren bei zeitlich veränderlichem Mengenstrom. Int J Heat Mass Transfer 13:S. 1753–S. 1766

    Article  Google Scholar 

  3. Willmott AJ (1968) Simulation of a thermal regenerator under conditions of variable mass flow. Int J Heat Mass Transfer 11:S. 1105–S. 1116

    Article  Google Scholar 

  4. Razelos P, Benjamin MK (1979) Computer model of thermal regenerators with variable mass flow rates. Int J Heat Mass Transfer 21:S. 735–S. 743

    Article  Google Scholar 

  5. Schmidt FW, Willmott AJ (1981) Thermal energy storage and regeneration. McGraw-Hill Book Company, New York s. bes. S. 159–S. 164

    Google Scholar 

  6. Adler W, Bender W, Sucker D, Wahlbrink J, Liere-Netheler W (2005) Neues Beheizungssystem mit Rohrregenerator und Flachflammenbrenner. VDI-Berichte 1888 p. 513/518. 22. Deutscher Flammentag

    Google Scholar 

  7. Marion M et al. (2008) Steigerung der Energieeffizienz bei Schmiedeöfen. Stahl und Eisen 128(7):29–34

    MathSciNet  Google Scholar 

  8. Heiligenstaedt W (1966) Wärmetechnische Rechnungen für Industrieöfen. 4. Aufl. Verl. Stahleisen, Düsseldorf

    Google Scholar 

  9. Kuhn P, Sucker D (1984) Anwendung eines neuen mathematischen Modells zur Ermittlung der energetisch günstigsten Betriebsweise von Winderhitzern. Stahl u Eisen 104(11):S. 545–S. 550

    Google Scholar 

  10. Kuhn P, Sucker D (1986) Improvement of process control in hot-blast stoves. Proc. Eur. Ironmaking Congr., vol. 3. Aachen. p IV/6

    Google Scholar 

  11. Hausen H (1931) Näherungsverfahen zur Berechnung des Wärmeaustausches in Regeneratoren. Z Angew Math Mech 11(2):S. 105–S. 114

    Article  MATH  Google Scholar 

  12. Willmott AJ (1964) Digital computer simulation of a thermal regenerator. Int J Heat Mass Transfer 7:S. 1291–S. 1303

    Article  Google Scholar 

  13. Hausen H (1980) Genauigkeit von Differenzverfahren zur Berechnung des Temperaturverlaufs in Regeneratoren. Wärme- und Stoffübertragung 14(1):S. 1–S. 6

    Article  Google Scholar 

  14. Anzelius A (1926) Über Erwärmung vermittels durchströmender Medien. Z Angew Math Mech 6(4):S. 291–S. 294

    Article  MATH  Google Scholar 

  15. Nußelt W (1927) Die Theorie des Winderhitzers. VDI-Z 71:S. 85–S. 91

    Google Scholar 

  16. Nußelt W (1928) Der Beharrungszustand im Winderhitzer. VDI-Z 72:S. 1052–S. 1054

    Google Scholar 

  17. Schneidler W (1928) Mathematische Theorie der Wärmespeicher. Z Angew Math Mech 8(5):S. 385–S. 393

    Article  MATH  Google Scholar 

  18. Ackermann G (1931) Die Theorie der Wärmeaustauscher mit Wärmespeicherung. Z Angew Math Mech 11(3):S. 192–S. 205

    Article  MATH  Google Scholar 

  19. Schack A (1943/44) Die Berechnung der Regeneratoren. Arch Eisen-Hüttenwesen 17(5/6):S. 101–S. 118

    Google Scholar 

  20. Schack A (1983) Der industrielle Wärmeübergang. 8. Aufl. Verl. Stahleisen, Düsseldorf; s. bes. S. 188–S. 198

    Google Scholar 

  21. Nahavandi AN, Weinstein AS (1961) A solution to the periodic flow regenerative heat exchanger problem. Appl Sci Res A, 10:S.335–S. 348

    Article  MATH  Google Scholar 

  22. Sandner H (1971) Beitrag zur linearen Theorie des Regenerators. Diss. TU München

    Google Scholar 

  23. Iliffe CE (1948) Thermal analysis of control-flow regenerative heat exchanger. Proc Inst Mech Eng 159:S. 363–S. 372

    Article  Google Scholar 

  24. Vortmeyer D, Le Mong S (1976) Anwendung des Äquivalenzprinzipes zwischen Ein- und Zweiphasenmodellen auf die Lösung der Regeneratorgleichungen. Wärme- und Stoffübertragung 9:S. 29–S. 37

    Article  Google Scholar 

  25. Vortmeyer D (1989) Packed bed thermal dispersion models and consistent sets of coefficients. Chem Eng Process 26:S. 263–S. 268

    Article  Google Scholar 

  26. Willmott AJ (1969) The regenerative heat exchanger computer representation. Int J Heat Mass Transfer 12:S. 997–S. 1014

    Article  Google Scholar 

  27. Schellmann E (1970) Näherungsverfahren zur Berechnung der Wärmeübertragung in Regeneratoren unter Berücksichtigung der Wärmeverluste. Chem Ing Techn 42(22):S. 1358–S. 1363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Hausen, H., Bender), (. (2010). N1 Heat Transfer in Regenerators. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_104

Download citation

Publish with us

Policies and ethics