Skip to main content

CT/MRI Technology: Basic Principles

  • Reference work entry
Textbook of Stereotactic and Functional Neurosurgery

Abstract

Ever since the beginning of human stereotactic neurosurgery in 1947 [1], the radiological study has been an absolute prerequisite for the very existence of this surgery. Furthermore, the radiological study has always constituted an integral part of the surgical procedure itself. It was indeed the limitations of conventional radiology (plain X-ray, pneumoencephalography, ventriculography, arteriography), which for a long time did put the limits for what could be achieved with stereotactic neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science 1947;106:349–50.

    Article  PubMed  CAS  Google Scholar 

  2. Hounsfield GN.Computerized transverse axial scanning (tomography): Part I. Description of system. Br J Radiol 1973;46:1016–22.

    Article  PubMed  CAS  Google Scholar 

  3. Goerss S, Kelly PJ, Kall B, Alker GJ. A computed tomographic stereotactic adaptation system. Neurosurgery 1982;10:375–9.

    Article  PubMed  CAS  Google Scholar 

  4. Rezai AR, Phillips M, Baker KB, Sharan AD, Nyenhuis J, Tkach J, et al. Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Invest Radiol 2004;39:300–3.

    Article  PubMed  Google Scholar 

  5. Henderson JM, Tkach J, Phillips M, Baker K, Shellock FG, Rezai AR. Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson’s disease: case report. Neurosurgery 2005;57:E1063.

    Article  PubMed  Google Scholar 

  6. Laitinen LV, Liliequist B, Fagerlund M, Eriksson AT. An adapter for computed tomography-guided stereotaxis. Surg Neurol 1985;23:559–66.

    Article  PubMed  CAS  Google Scholar 

  7. Hitchcock E. Stereotactic-computerized tomography interface device. Appl Neurophysiol 1987;50:63–7.

    PubMed  CAS  Google Scholar 

  8. Bergström M, Greitz T. Stereotaxic computed tomography. A J Roentgenol 1976;127:167–70.

    Google Scholar 

  9. Bjartmarz H, Rehncrona S. Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg. 2007;85:235–42.

    Article  PubMed  Google Scholar 

  10. Bejjani BP, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, Bonnet AM, et al. Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 2000;92:615–25.

    Article  PubMed  CAS  Google Scholar 

  11. Patel NK, Heywood P, O’Sullivan K, Love S, Gill SS. MRI-directed subthalamic nucleus surgery for Parkinson’s disease. Stereotact Funct Neurosurg 2002;78:132–45.

    Article  PubMed  Google Scholar 

  12. Lang J, Schlehahn F, Jensen HP, Lemke J, Klinge H, Muhtaroglu U. Cranio-cerebral Topography as a Basis for Interpreting Computed Topograms. In Lanksch W, Kazner E, editors. Cranial computerized tomography. Berlin: Springer, 1976. p. 24–36.

    Google Scholar 

  13. Lange S, Golde G. Resolution characteristics of computerized tomography and their impact on quantitative brain diagnosis. In: Lanksch W, Kazner E, editors. Cranial computerized tomography. Berlin: Springer; 1976. p. 52–5.

    Google Scholar 

  14. Laitinen LV. The Laitinen system. In: Lunsford LD, editor. Modern stereotactic neurosurgery. Boston: Nijhoff M; 1988. p. 99–116.

    Google Scholar 

  15. Lunsford LD, Leksell D. The Leksell system. In: Lunsford LD, editor. Modern stereotactic neurosurgery. Boston: Nijhoff M; 1988. p. 27–46

    Google Scholar 

  16. Mundinger F, Birg W. The imaging-compatible riechert-mundinger system. In: Lunsford LD, editor. Modern stereotactic neurosurgery. Boston: Nijhoff M; 1988. p. 13–25.

    Google Scholar 

  17. Goerss S, Kelly PJ, Kall B, Alker GJ. A computed tomographic stereotactic adaptation system. Neurosurgery. 1982;10:375–9.

    Article  PubMed  CAS  Google Scholar 

  18. Kelly PJ. Contempory stereotactic ventralis lateral thalamotomy in the treatment of parkinsonian tremor and other movement disorders. In Heilbrun MP, editor. Stereotactic neurosurgery, Vol 2: Concepts in neurosurgery. Baltimore: Williams and Wilkins; 1988. p. 133–47.

    Google Scholar 

  19. Heilbrun MP. Computed tomography-guided stereotactic systems. Clin Neurosurg. 1982;31:564–81.

    Google Scholar 

  20. Kelly PJ, Goerss SJ, Kall BA. Evolution of contemporary instrumentation for computer-assisted stereotactic surgery. Surg Neurol. 1988;30:204–15.

    Article  PubMed  CAS  Google Scholar 

  21. Rosenfeld JV, Barnett GH, Palmer J. Computed tomography guided stereotactic thalamotomy using the Brown-Roberts-Wells system for non-Parkinsonian movement disorders. Technical note. Stereotact Funct Neurosurg. 1991;56:184–92.

    Article  PubMed  CAS  Google Scholar 

  22. Brown RA. A computerized tomography-computer graphics approach to stereotaxic localization. J Neurosurg. 1979;50:715–20.

    Article  PubMed  CAS  Google Scholar 

  23. Couldwell WT, Apuzzo MLJ. Initial experience related to the use of the Cosman-Roberts-Wells stereotactic instrument. Technical note. J Neurosurg. 1990;72:145–8.

    Article  PubMed  CAS  Google Scholar 

  24. Hariz MI, Laitinen LV. The Laitinen apparatus. In: Gildenberg PL and Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. New York: Mc Graw Hill; 1997. p. 87–94.

    Google Scholar 

  25. Maciunas RJ, Galloway RL Jr, Latimer J, Cobb C, Zaccharias E, Moore A, et al. An independant application accuracy evaluation of stereotactic frame systems. Stereotact Funct Neurosurg. 1992;58:103–7.

    Article  PubMed  CAS  Google Scholar 

  26. Talairach J, David M, Tournoux P, Corredor H, Kvasina T. Atlas d? Anatomie Stéréotaxique. Paris, Masson, 1957.

    Google Scholar 

  27. Tokunaga A, Takase M, Otani K. The glabella-inion line as a baseline for CT scanning of the brain. Neuroradiology. 1977;14:67–71.

    Article  PubMed  CAS  Google Scholar 

  28. Takase M, Tokunaga A, Otani K, Hori T. Atlas of the human brain for computed tomography based on the glabella-inion line. Neuroradiology. 1977;14:73–9.

    Article  PubMed  CAS  Google Scholar 

  29. Ohye C, Kawashima Y, Hirato M, Wada H, Nakajima H. Stereotactic CT scan applied to stereotactic thalamotomy and biopsy. Acta Neurochir. 1984;71:55–68.

    Article  CAS  Google Scholar 

  30. Spiegelmann R, Friedman WA. Rapid determination of Thalamic CT-stereotactic coordinates: A method. Acta Neurochir (Wien). 1991;110:77–81.

    Article  CAS  Google Scholar 

  31. Gouda KI, Freidberg SR, Larsen CR, Baker RA, Silverman ML. Modification of the Gouda frame to allow stereotactic biopsy of the brain using the GE 8800 computed tomographic scanner. Neurosurgery. 1983;13:176–81.

    Article  PubMed  CAS  Google Scholar 

  32. Spiegel EA, Wycis HT, Baird HW. Studies in Stereoencephalotomy. I. Topical relationships of subcortical structures to the posterior commissure. Confin Neurol. 1952;12:121–33.

    Article  PubMed  CAS  Google Scholar 

  33. Fox MW, Ahlskog JE, Kelly PJ. Stereotactic ventrolateralis thalamotomy for medically refractory tremor in post-levodopa era Parkinson’s disease patients. J Neurosurg. 1991;75:723–30.

    Article  PubMed  CAS  Google Scholar 

  34. Pinto S, Le Bas JF, Castana L, Krack P, Pollak P, Benabid AL.Comparison of two techniques to postoperatively localize the electrode contacts used for subthalamic nucleus stimulation. Neurosurgery. 2007; Suppl 2:285–92.

    Google Scholar 

  35. Breit S, LeBas JF, Koudsie A, Schulz J, Benazzouz A, Pollak P, et al. Pretargeting for the implantation of stimulation electrodes into the subthalamic nucleus: a comparative study of magnetic resonance imaging and ventriculography. Neurosurgery. 2006;58 Suppl 1:ONS83–95.

    Article  PubMed  Google Scholar 

  36. Merello M, Cammarota A, Cerquetti D, Leiguarda RC. Mismatch between electrophysiologically defined and ventriculography based theoretical targets for posteroventral pallidotomy in Parkinson’s Disease. J Neurol Neurosurg Psychiatry. 2000;69:787–91.

    Article  PubMed  CAS  Google Scholar 

  37. Hariz MI, Bergenheim AT. A comparative study on ventriculographic and computed tomography-guided determinations of brain targets in functional stereotaxis. J Neurosurg. 1990;73:565–71.

    Article  PubMed  CAS  Google Scholar 

  38. Hirabayashi H, Tengvar M, Hariz MI: Imaging of the pallidal target. Mov Disord. 2002;17 Suppl 3:S162–6.

    Article  Google Scholar 

  39. Vayssiere N, Hemm S, Zanca M, Picot MC, Bonafe A, Cif L, et al. Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children. J Neurosurg. 2000;93:784–90.

    Article  PubMed  CAS  Google Scholar 

  40. Vayssiere N, Hemm S, Cif L, Picot MC, Diakonova N, El Fertit H, et al. Comparison of atlas- and magnetic resonance imaging–based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. J Neurosurg. 2002;96:673–9.

    Article  PubMed  Google Scholar 

  41. Starr PA, Vitek JL, DeLong M, Bakay RAE. Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery. 1999;44:303–14.

    Article  PubMed  CAS  Google Scholar 

  42. Vayssiere N, Gaag N, van der Cif L, Hemm S, Verdier R, Frerebeau P, et al. Deep brain stimulation for dystonia confirming a somatotopic organization in the globus pallidus internus. J Neurosurg. 2004;101:181–8.

    Article  PubMed  Google Scholar 

  43. Zhu XL, Hamel W, Schrader B, Weinert D, Hedderich J, Herzog J, et al. Magnetic Resonance Imaging-Based Morphometry and Landmark Correlation of Basal Ganglia Nuclei. Acta Neurochir. 2002;144 959–69.

    Article  CAS  Google Scholar 

  44. Schrader B, Hamel W, Weinert D, Mehdorn HM. Documentation of electrode localization. Mov Disord. 2002;17 Suppl 3:S167–74.

    Article  PubMed  Google Scholar 

  45. Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A, et al. Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging–verified lead locations. J Neurosurg. 2002;97:370–87.

    Article  PubMed  Google Scholar 

  46. Hariz MI, Krack P, Melvill R, Jorgensen JV, Hamel W, Hirabayashi H, et al. A quick, and universal method for stereotactic visualization of the subthalamic nucleus before and after implantation of deep brain stimulation electrodes. Stereotact Funct Neurosurg. 2003;80:96–101.

    Article  PubMed  Google Scholar 

  47. Chen CC, Pogosyan A, Zrinzo LU, Tisch S, Limousin P, Ashkan K, et al. Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson’s disease surgery. Exp Neurol. 2006;198:214–21.

    Article  PubMed  Google Scholar 

  48. Baker KB, Tkach JA, Phillips MD, Rezai AR. Variability in RF-induced heating of a deep brain stimulation implant across MR systems. J Magn Reson Imaging. 2006;24:1236–42.

    Article  PubMed  Google Scholar 

  49. Larson PS, Richardson RM, Starr PA, Martin AJ. Magnetic resonance imaging of implanted deep brain stimulators: experience in a large series. Stereotact Funct Neurosurg. 2008;86:92–100.

    Article  PubMed  Google Scholar 

  50. Leksell L, Leksell D, Schwebel J. Stereotaxis and nuclear magnetic resonance. J Neurol Neurosurg Psychiatry. 1985;48:14–18.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hariz, M.I., Zrinzo, L. (2009). CT/MRI Technology: Basic Principles. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics