Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

The Kalman filter and its variants are some of the most popular tools in statistical signal processing and estimation theory. In this chapter, we introduce the Kalman filter, providing a succinct, yet rigorous derivation thereof, which is based on the orthogonality principle. We also introduce several important variants of the Kalman filter, namely various Kalman smoothers, a Kalman predictor, a nonlinear extension (the extended Kalman filter), and adaptation to cases of temporally correlated measurement noise.

The application of the Kalman filter to two important speech processing problems, namely, speech enhancement and speaker localization is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 729.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANC:

active noise cancelation

AR:

autoregressive

ARMA:

autoregressive moving-average

ASR:

automatic speech recognition

EKF:

extended Kalman filter

EM:

estimate-maximize

GCC:

generalized cross-correlation

HMM:

hidden Markov models

HOS:

higher-order statistics

II:

information index

IMM:

interacting multiple model

LPC:

linear prediction coefficients

M-step:

maximization stage

MA:

moving average

ML:

maximum-likelihood

MMSE:

minimum mean-square error

MSE:

mean-square error

NASA:

National Aeronautics and Space Administration

NN:

neural network

PARCOR:

partial correlation coefficients

SNR:

signal-to-noise ratio

TDOA:

time difference of arrival

UKF:

unscented Kalman filter

UT:

unscented transform

WLS:

weighted least-squares

References

  1. M.S. Grewal, A.P. Andrews: Kalman Filtering, Theory and Practice, Information and System Sciences series (Prentice-Hall, New Jersey 1993)

    MATH  Google Scholar 

  2. R.E. Kalman: A new approach to linear filtering and prediction problems, ASME J. Basic Eng. 82(Series D), 35-45 (1960)

    Article  Google Scholar 

  3. R.E. Kalman: New methods and results in linear prediction and filtering theory, Proc. Symposium on Engineering Applications of Random Function Theory and Probability (Wiley, New York 1961)

    Google Scholar 

  4. S.F. Schmidt: Computational techniques in Kalman filtering (NATO Advisory Group for Aerospace Research and Development, London 1970)

    Google Scholar 

  5. S.F. Schmidt: Practical Aspects of Kalman filtering implementation (NATO Advisory Group for Aerospace Research and Development, London 1976)

    Google Scholar 

  6. P.S. Maybeck: Stochastic Models, Estimation and Control, Vol. 2 (Academic, San Diego 1982)

    MATH  Google Scholar 

  7. T. Kailath: Lectures on Wiener and Kalman Filtering (Springer, New York 1981)

    Book  MATH  Google Scholar 

  8. S. Haykin (Ed.): Kalman filtering and neural networks, Adaptive and Learning Systems for Signal Processing (Wiley, New York 2001)

    Google Scholar 

  9. H.E. Rauch, F. Tung, C.T. Striebel: Maximum likelihood estimates of linear dynamic systems, AIAA J. 3, 1445-1450 (1965)

    Article  MathSciNet  Google Scholar 

  10. L.A. McGee, S.F. Schmidt: Discovery of the Kalman Filter as a Practical Tool for Aerospace and Industry, National Aeronautics and Space Administration (NASA) Technical Memorandum 86847, Nov. 1985

    Google Scholar 

  11. N. Wiener: The Extrapolation, Interpolation and Smoothing of Stationary Time Series (Wiley, New York 1949)

    MATH  Google Scholar 

  12. A.P. Dempster, N.M. Laird, D.B. Rubin: Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B 39(1), 1-38 (1977)

    MathSciNet  MATH  Google Scholar 

  13. K.K. Paliwal, A. Basu: A speech enhancement method based on Kalman filtering, Proc. IEEE ICASSP (IEEE, Dallas 1987) pp. 177-180

    Google Scholar 

  14. B. Koo, J.D. Gibson, S.D. Gray: Filtering of colored noise for speech enhancement and coding, Proc. IEEE ICASSP (IEEE, Glasgow 1989) pp. 349-352

    Google Scholar 

  15. J.D. Gibson, B. Koo, S.D. Gray: Filtering of colored noise for speech enhancement and coding, IEEE Trans. Acoust. Speech 39(6), 1732-1742 (1991)

    Article  Google Scholar 

  16. S. Haykin: Adaptive Filter Theory, Information and System Sciences, 4th edn. (Prentice-Hall, Upper Saddle River 2002)

    MATH  Google Scholar 

  17. M. Feder, A.V. Oppenheim, E. Weinstein: Methods for noise cancellation based on the EM algorithm, Proc. IEEE ICASSP (IEEE, Dallas 1987) pp. 201-204

    Google Scholar 

  18. B. Widrow, J.R. Glover Jr., J.M. McCool, J. Kaunitz, C.S. Williams, R.H. Hearn, J.R. Zeider, E. Dong Jr., R.C. Goodlin: Adaptive noise cancelling: principals and applications, Proc. IEEE 63(12), 1692-1716 (1975)

    Article  Google Scholar 

  19. M. Feder, A.V. Oppenheim, E. Weinstein: Maximum likelihood noise cancellation using the EM algorithm, IEEE Trans. Acoust. Speech 37(2), 204-216 (1989)

    Article  Google Scholar 

  20. E. Weinstein, A.V. Oppenheim, M. Feder: Signal Enhancement Using Single and Multi-Sensor Measurements (MIT, Cambridge 1990)

    Google Scholar 

  21. J.S. Lim, A.V. Oppenheim: All-pole modeling of degraded speech, IEEE Trans. Acoust. Speech 26(3), 197-210 (1978)

    Article  MATH  Google Scholar 

  22. E. Weinstein, A.V. Oppenheim, M. Feder, J.R. Buck: Iterative and sequential algorithms for multisensor signal enhancement, IEEE Trans. Signal Process. 42(4), 846-859 (1994)

    Article  Google Scholar 

  23. M. Feder, E. Weinstein, A.V. Oppenheim: A new class of sequential and adaptive algorithms with application to noise cancellation, Proc. IEEE ICASSP (IEEE, New York 1988) pp. 557-560

    Google Scholar 

  24. A.V. Oppenheim, E. Weinstein, K.C. Zangi, M. Feder, D. Gauger: Single-sensor active noise cancellation, IEEE Trans. Speech Audio Process. 2(2), 285-290 (1994)

    Article  Google Scholar 

  25. B.-G. Lee, K.Y. Lee, S. Ann: An EM-based approach for parameter enhancement with an application to speech signals, Signal Process. 46, 1-14 (1995)

    Article  MATH  Google Scholar 

  26. K.Y. Lee, B.-G. Lee, S. Ann: Adaptive filtering for speech enhancement in colored noise, IEEE Signal Process. Lett. 4(10), 277-279 (1997)

    Article  Google Scholar 

  27. Z. Goh, K.-C. Tan, B.T.G. Tan: Kalman-Filtering Speech Enhancement Method Based on a Voiced-Unvoiced Speech Model, IEEE Trans. Speech Audio Process. 7(5), 510-524 (1999)

    Article  Google Scholar 

  28. M. Gabrea, E. Grivel, M. Najim: A single microphone Kalman filter-based noise canceller, IEEE Signal Process. Lett. 6(3), 55-57 (1999)

    Article  Google Scholar 

  29. B.D.O. Anderson, J.B. Moore: Optimal Filtering, Information and System Sciences Series (Prentice-Hall, Englewood Cliffs 1979)

    MATH  Google Scholar 

  30. S. Gannot, D. Burshtein, E. Weinstein: Iterative and sequential Kalman filter-based speech enhancement algorithms, IEEE Trans. Speech Audio Process. 6(4), 373-385 (1998)

    Article  Google Scholar 

  31. M. Fujimoto, Y. Ariki: Noisy speech recognition using noise reduction method based nn Kalman filter, Proc. IEEE ICASSP (IEEE, Istanbul 2000) pp. 1727-1730

    Google Scholar 

  32. S.F. Boll: Suppression of acoustic noise in speech using spectral subtraction, IEEE Trans. Acoust. Speech 27(2), 113-120 (1979)

    Article  Google Scholar 

  33. K.Y. Lee, B.-G. Lee, I. Song, S. Ann: Robust estimation of ar parameters and its application for speech enhancement, Proc. IEEE ICASSP (IEEE, San Francisco 1992) pp. 309-312

    Google Scholar 

  34. N. Ma, M. Bouchard, R.A. Goubran: Perceptual Kalman filtering for speech enhancement in colored noise, Proc. IEEE ICASSP, Vol. 1 (IEEE, Montreal 2004) pp. 717-720

    Google Scholar 

  35. X. Shen, L. Deng: A dynamic system approach to speech enhancement using the H filtering algorithm, IEEE Trans. Speech Audio Process. 27(4), 391-399 (1999)

    Article  Google Scholar 

  36. E.A. Wan, A.T. Nelson: Removal of noise from speech using the dual Ekf algorithm, Proc. IEEE ICASSP (IEEE, Seattle, Washington 1998)

    Google Scholar 

  37. S.J. Julier, J.K. Uhlmann: Unscented filtering and nonlinear estimation, Proc. IEEE 92(3), 401-422 (2004)

    Article  Google Scholar 

  38. E.A. Wan, R. van der Merwe: The unscented Kalman filter for nonlinear estimation, Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing, Communication and Control (AS-SPCC) (IEEE, Lake Louise 2000)

    Google Scholar 

  39. S. Gannot, M. Moonen: On the application of the unscented Kalman filter to sppech processing, The International Workshop on Acoustic Echo and Noise Control (IWAENC) (Kyoto 2003) pp. 27-30

    Google Scholar 

  40. W. Fong, S. Godsill: Monte Carlo smoothing with application to audio signal enhancement, IEEE SSP Workshop (IEEE, Singapore 2001) pp. 18-210

    Google Scholar 

  41. T.W. Parsons: Voice and Speech Processing (McGraw-Hill, USA 1987)

    Google Scholar 

  42. Y. Ephraim, D. Malah, B.H. Juang: On the application of hidden Markov models for enhancing noisy speech, IEEE Trans. Acoust. Speech 37, 1846-1856 (1989)

    Article  Google Scholar 

  43. Y. Ephraim: A bayesian estimation approach for speech enhancement using hidden markov models, IEEE Trans. Signal Process. 40, 725-735 (1992)

    Article  Google Scholar 

  44. Y. Ephraim: Speech enhancement using state dependent dynamical system model, Proc. IEEE ICASSP (IEEE, San Francisco 1992) pp. 289-292

    Google Scholar 

  45. K.Y. Lee, K. Shirai: Efficient recursive estimation for speech enhancement in colored noise, IEEE Signal Process. Lett. 3, 196-199 (1996)

    Article  Google Scholar 

  46. K.Y. Lee, S. Jung: Time-domain approach using multiple Kalman filters and em algorithm to speech enhancement with nonstationary noise, IEEE Trans. Speech Audio Process. 8(3), 373-385 (2000)

    Google Scholar 

  47. J.B. Kim, K.Y. Lee, C.W. Lee: On the applications of the interacting multiple model algorithm for enhancing noisy speech, IEEE Trans. Speech Audio Process. 8(3), 349-352 (2000)

    Article  Google Scholar 

  48. K.Y. Lee, S. McLaughlin, K. Shirai: Speech enhancement based on extended Kalman filter and neural predictive hidden Markov model, Proc. Int. Workshop Neural Networks for Signal Processing (IEEE, Kyoto 1996) pp. 302-310

    Google Scholar 

  49. S. Gannot: Speech Enhancement: Appliction of the Kalman filter in the estimate-maximize (EM) framework. In: Speech Enhancement, Signals and Communication Technology, ed. by S. Makino, J. Benesty, J. Chen (Springer, Berlin 2005), pp. 161-198

    Google Scholar 

  50. D. Burshtein: Joint modeling and maximum-likelihood estimation of pitch and linear prediction coefficient parameters, J. Acoust. Soc. Am. 3, 1531-1537 (1992)

    Article  Google Scholar 

  51. J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L. Dahlgren, V. Zue: Acoustic-Phonetic Continuous Speech Corpus (TIMIT), CD-ROM (Oct. 1991)

    Google Scholar 

  52. A. Varga, H.J.M. Steeneken: Assessment for automatic speech recognition: II. NOISEX-92: a database and an experiment to study the effect of additive noise on speech recognition systems, Speech Commun. 12, 247-251 (1993)

    Article  Google Scholar 

  53. C.H. Knapp, G.C. Carter: The generalized correlation method for estimation of time delay, IEEE Trans. Acoust. Speech 24(4), 320-327 (1976)

    Article  Google Scholar 

  54. T.G. Dvorkind, S. Gannot: Time difference of arrival estimation of speech source in a noisy and reverberant environment, Signal Process. 85(1), 177-204 (2005)

    Article  MATH  Google Scholar 

  55. J.B. Allen, D.A. Berkley: Image method for efficiently simulating small-room acoustics, J. Acoust. Soc. Am. 65(4), 943-950 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharon Gannot Ph.D or Arie Yeredor Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gannot, S., Yeredor, A. (2008). The Kalman Filter. In: Benesty, J., Sondhi, M.M., Huang, Y.A. (eds) Springer Handbook of Speech Processing. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49127-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49127-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49125-5

  • Online ISBN: 978-3-540-49127-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics