Skip to main content

Pitch and Voicing Determination of Speech with an Extension Toward Music Signals

  • Chapter
Springer Handbook of Speech Processing

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter reviews selected methods for pitch determination of speech and music signals. As both these signals are time variant we first define what is subsumed under the term pitch. Then we subdivide pitch determination algorithms (PDAs) into short-term analysis algorithms, which apply some spectral transform and derive pitch from a frequency or lag domain representation, and time-domain algorithms, which analyze the signal directly and apply structural analysis or determine individual periods from the first partial or compute the instant of glottal closure in speech. In the 1970s, when many of these algorithms were developed, the main application in speech technology was the vocoder, whereas nowadays prosody recognition in speech understanding systems and high-accuracy pitch period determination for speech synthesis corpora are emphasized. In musical acoustics, pitch determination is applied in melody recognition or automatic musical transcription, where we also have the problem that several pitches can exist simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 729.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACF:

autocorrelation function

CH:

call home

DFT:

discrete Fourier transform

FFT:

fast Fourier transform

FIR:

finite impulse response

GCI:

glottal closure instant

IP:

internet protocol

LP:

linear prediction

MAP:

maximum a posteriori

PDA:

pitch determination algorithms

PDF:

probability density function

SNR:

signal-to-noise ratio

SVD:

singular value decomposition

References

  1. W.J. Hess: Pitch Determination of Speech Signals - Algorithms and Devices (Springer, Berlin, Heidelberg 1983)

    Book  Google Scholar 

  2. R.J. McAulay, T.F. Quatieri: Speech analysis/synthesis based on a sinusoidal representation, IEEE Trans. Acoust. Speech Signal Process. 34, 744-754 (1986)

    Article  Google Scholar 

  3. E. Zwicker, W.J. Hess, E. Terhardt: Erkennung gesprochener Zahlworte mit Funktionsmodell und Rechenanlage, Kybernetik 3, 267-272 (1967), (in German)

    Article  Google Scholar 

  4. E. Terhardt: Calculating virtual pitch, Hearing Res. 1, 155-182 (1979)

    Article  Google Scholar 

  5. R. Plomp: Aspects of Tone Sensation (Academic, London 1976)

    Google Scholar 

  6. R. Meddis, L. OʼMard: A unitary model for pitch perception, J. Acoust. Soc. Am. 102, 1811-1820 (1997)

    Article  Google Scholar 

  7. K.J. Kohler: 25 Years of Phonetica: Preface to the special issue on pitch analysis, Phonetica 39, 185-187 (1992)

    Google Scholar 

  8. W.J. Hess, H. Indefrey: Accurate time-domain pitch determination of speech signals by means of a laryngograph, Speech Commun. 6, 55-68 (1987)

    Article  Google Scholar 

  9. W.J. Hess: Pitch and voicing determination. In: Advances in Speech Signal Processing, ed. by M.M. Sondhi, S. Furui (Dekker, New York 1992), p.3-48

    Google Scholar 

  10. A.M. Noll: Cepstrum pitch determination, J. Acoust. Soc. Am. 41, 293-309 (1967)

    Article  Google Scholar 

  11. L.R. Rabiner: On the use of autocorrelation analysis for pitch detection, IEEE Trans. Acoust. Speech Signal Process. 25, 24-33 (1977)

    Article  Google Scholar 

  12. E. Terhardt, G. Stoll, M. Seewann: Algorithm for extraction of pitch and pitch salience from complex tonal signals, J. Acoust. Soc. Am. 71, 679-688 (1982)

    Article  Google Scholar 

  13. M.S. Harris, N. Umeda: Difference limens for fundamental frequency contours in sentences, J. Acoust. Soc. Am. 81, 1139-1145 (1987)

    Article  Google Scholar 

  14. J. ʼt Hart: Differential sensitivity to pitch distance, particularly in speech, J. Acoust. Soc. Am. 69, 811-822 (1981)

    Article  Google Scholar 

  15. H. Duifhuis, L.F. Willems, R.J. Sluyter: Measurement of pitch in speech: an implementation of Goldsteinʼs theory of pitch perception, J. Acoust. Soc. Am. 71, 1568-1580 (1982)

    Article  Google Scholar 

  16. D.J. Hermes: Measurement of pitch by subharmonic summation, J. Acoust. Soc. Am. 83, 257-264 (1988)

    Article  Google Scholar 

  17. D. Talkin: A robust algorithm for pitch tracking (RAPT). In: Speech Coding and Synthesis, ed. by B. Kleijn, K. Paliwal (Elsevier, Amsterdam 1995), p.-495-518

    Google Scholar 

  18. P. Hedelin, D. Huber: Pitch period determination of aperiodic speech signals, Proc. IEEE ICASSP (1990) pp. 361-364

    Google Scholar 

  19. H. Hollien: On vocal registers, J. Phonet. 2, 225-243 (1974)

    Google Scholar 

  20. N.P. McKinney: Laryngeal Frequency Analysis for Linguistic Research (Univ. Michigan, Ann Arbor 1965), Res. Rept. No. 14

    Google Scholar 

  21. H. Fujisaki, K. Hirose, K. Shimizu: A new system for reliable pitch extraction of speech, Proc. IEEE ICASSP (1986), paper 34.16

    Google Scholar 

  22. M.M. Sondhi: New methods of pitch extraction, IEEE Trans. Acoust. Speech Signal Process. 26, 262-266 (1968)

    Google Scholar 

  23. J.D. Markel: The SIFT algorithm for fundamental frequency estimation, IEEE Trans. Acoust. Speech Signal Process. 20, 149-153 (1972)

    Google Scholar 

  24. V.N. Sobolev, S.P. Baronin: Investigation of the shift method for pitch determination, Elektrosvyaz 12, 30-36 (1968), in Russian

    Google Scholar 

  25. J.A. Moorer: The optimum comb method of pitch period analysis of continuous digitized speech, IEEE Trans. Acoust. Speech Signal Process. 22, 330-338 (1974)

    Article  Google Scholar 

  26. T. Shimamura, H. Kobayashi: Weighted autocorrelation for pitch extraction of noisy speech, IEEE Trans. Speech Audio Process. 9, 727-730 (2001)

    Article  Google Scholar 

  27. A. de Cheveigné, H. Kawahara: YIN, a fundamental frequency estimator for speech and music, J. Acoust. Soc. Am. 111, 1917-1930 (2002)

    Article  Google Scholar 

  28. K. Hirose, H. Fujisaki, S. Seto: A scheme for pitch extraction of speech using autocorrelation function with frame length proportional to the time lag, Proc. IEEE ICASSP (1992) pp. 149-152

    Google Scholar 

  29. D.E. Terez: Robust pitch determination using nonlinear state-space embedding, Proc. IEEE ICASSP (2002)

    Google Scholar 

  30. C.M. Rader: Vector pitch detection, J. Acoust Soc. Am. 36(C), 1463 (1964)

    Google Scholar 

  31. L.A. Yaggi: Full Duplex Digital Vocoder (Texas Instruments, Dallas 1962), Scientific Report No.1, SP14-A62; DDC-AD-282986

    Google Scholar 

  32. Y. Medan, E. Yair, D. Chazan: Super resolution pitch determination of speech signals, IEEE Trans. Signal Process. 39, 40-48 (1991)

    Article  Google Scholar 

  33. M.R. Weiss, R.P. Vogel, C.M. Harris: Implementation of a pitch-extractor of the double spectrum analysis type, J. Acoust. Soc. Am. 40, 657-662 (1966)

    Article  Google Scholar 

  34. H. Indefrey, W.J. Hess, G. Seeser: Design and evaluation of double-transform pitch determination algorithms with nonlinear distortion in the frequency domain, Proc. IEEE ICASSP, Vol. 2 (1985), paper 11.12

    Google Scholar 

  35. P. Martin: Comparison of pitch detection by cepstrum and spectral comb analysis, Proc. IEEE ICASSP (1982) pp. 180-183

    Google Scholar 

  36. V.T. Sreenivas: Pitch estimation of aperiodic and noisy speech signals (Indian Institute of Technology, Bombay 1982), Diss., Department of Electrical Engineering, Indian Institute of Technology

    Google Scholar 

  37. M.R. Schroeder: Period histogram and product spectrum: new methods for fundamental-frequency measurement, J. Acoust. Soc. Am. 43, 819-834 (1968)

    Google Scholar 

  38. P. Martin: A logarithmic spectral comb method for fundamental frequency analysis, Proc. 11th Int. Congr. on Phonetic Sciences Tallinn (1987), paper 59.2

    Google Scholar 

  39. P. Martin: WinPitchPro - a tool for text to speech alignment and prosodic analysis, Proc. Speech Prosody 2004 (2004) pp. 545-548, http://www.isca-speech.org/archive/sp2004 and http://www.winpitch.com

    Google Scholar 

  40. J.C. Brown, M. Puckette: A high-resolution fundamental frequency determination based on phase changes of the Fourier transform, J. Acoust. Soc. Am. 94, 662-667 (1993)

    Article  Google Scholar 

  41. J.C. Brown: Musical fundamental frequency tracking using a pattern recognition method, J. Acoust. Soc. Am. 92, 1394-1402 (1992)

    Article  Google Scholar 

  42. F. Charpentier: Pitch detection using the short-term phase spectrum, Proc. IEEE ICASSP (1986) pp. 113-116

    Google Scholar 

  43. M. Lahat, R.J. Niederjohn, D.A. Krubsack: A spectral autocorrelation method for measurement of the fundamental frequency of noise-corrupted speech, IEEE Trans. Acoust. Speech Signal Process. 35, 741-750 (1987)

    Article  Google Scholar 

  44. B. Doval, X. Rodet: Estimation of fundamental frequency of musical sound signals, Proc. IEEE ICASSP (1991) pp. 3657-3660

    Google Scholar 

  45. T. Abe, K. Kobayashi, S. Imai: Robust pitch estimation with harmonics enhancement in noisy environments based on instantaneous frequency, Proc. ICSLPʼ96 (1996) pp. 1277-1280, http://www.isca-speech.org/archive/icslp_1996

    Google Scholar 

  46. T. Nakatani, T. Irino: Robust and accurate fundamental frequency estimation based on dominant harmonic components, J. Acoust. Soc. Am. 116, 3690-3700 (2004)

    Article  Google Scholar 

  47. L.R. Rabiner, M.J. Cheng, A.E. Rosenberg, C.A. McGonegal: A comparative study of several pitch detection algorithms, IEEE Trans. Acoust. Speech 24, 399-423 (1976)

    Article  Google Scholar 

  48. L. Arévalo: Beiträge zur Schätzung der Frequenz gestörter Schwingungen kurzer Dauer und eine Anwendung auf die Analyse von Sprachsignalen (Ruhr-Universität, Bochum 1991), Diss. in German

    Google Scholar 

  49. A.M. Noll, A. Michael: Pitch determination of human speech by the harmonic product spectrum the harmonic sum spectrum and a maximum likelihood estimate, Symp. Comput. Process. Commun. 19, 779-797 (1970), ed. by the Microwave Inst., New York: Univ. of Brooklyn Press

    Google Scholar 

  50. D.H. Friedman: Pseudo-maximum-likelihood speech pitch extraction, IEEE Trans. Acoust. Speech Signal Process. 25, 213-221 (1977)

    Article  Google Scholar 

  51. R.J. McAulay, T.F. Quatieri: Pitch estimation and voicing detection based on a sinusoidal speech model, Proc. IEEE ICASSP (1990) pp. 249-252

    Google Scholar 

  52. A. Moreno, J.A.R. Fonollosa: Pitch determination of noisy speech using higher order statistics, Proc. IEEE ICASSP (1992) pp. 133-136

    Google Scholar 

  53. B.B. Wells: Voiced/Unvoiced decision based on the bispectrum, Proc. IEEE ICASSP (1985) pp. 1589-1592

    Google Scholar 

  54. J. Tabrikian, S. Dubnov, Y. Dickalov: Speech enhancement by harmonic modeling via MAP pitch tracking, Proc. IEEE ICASSP (2002) pp. 3316-3319

    Google Scholar 

  55. S. Godsill, M. Davy: Bayesian harmonic models for musical pitch estimation and analysis, Proc. IEEE ICASSP (2002) pp. 1769-1772

    Google Scholar 

  56. C.A. McGonegal, L.R. Rabiner, A.E. Rosenberg: A subjective evaluation of pitch detection methods using LPC synthesized speech, IEEE Trans. Acoust. Speech Signal Process. 25, 221-229 (1977)

    Article  Google Scholar 

  57. C. Hamon, E. Moulines, F. Charpentier: A diphone synthesis system based on time-domain prosodic modifications of speech, Proc. IEEE ICASSP (1989) pp. 238-241

    Google Scholar 

  58. D.M. Howard: Peak-picking fundamental period estimation for hearing prostheses, J. Acoust. Soc. Am. 86, 902-910 (1989)

    Article  Google Scholar 

  59. I. Dologlou, G. Carayannis: Pitch detection based on zero-phase filtering, Speech Commun. 8, 309-318 (1989)

    Article  Google Scholar 

  60. W.J. Hess: An algorithm for digital time-domain pitch period determination of speech signals and its application to detect F0 dynamics in VCV utterances, Proc. IEEE ICASSP (1976) pp. 322-325

    Google Scholar 

  61. T.V. Ananthapadmanabha, B. Yegnanarayana: Epoch extraction of voiced speech, IEEE Trans. Acoust. Speech Signal Process. 23, 562-569 (1975)

    Article  Google Scholar 

  62. L.O. Dolanský: An instantaneous pitch-period indicator, J. Acoust. Soc. Am. 27, 67-72 (1955)

    Article  Google Scholar 

  63. I.S. Howard, J.R. Walliker: The implementation of a portable real-time multilayer-perceptron speech fundamental period estimator, Proc. EUROSPEECH-89 (1989) pp. 206-209, http://www.isca-speech.org/archive/eurospeech_1989

    Google Scholar 

  64. W.J. Hess: A pitch-synchronous digital feature extraction system for phonemic recognition of speech, IEEE Trans. Acoust. Speech Signal Process. 24, 14-25 (1976)

    Article  Google Scholar 

  65. A. Davis, S. Nordholm, R. Togneri: Statistical voice activity detection using low-variance spectrum estimation and an adaptive threshold, IEEE Trans. Audio Speech Lang. Process. 14, 412-424 (2006)

    Article  Google Scholar 

  66. L.J. Siegel, A.C. Bessey: Voiced/unvoiced/mixed excitation classification of speech, IEEE Trans. Acoust. Speech Signal Process. 30, 451-461 (1982)

    Article  Google Scholar 

  67. S. Ahmadi, A.S. Spanias: Cepstrum-based pitch detection using a new statistical V/UV classification algorithm, IEEE Trans. Speech Audio Process. 7, 333-338 (1999)

    Article  Google Scholar 

  68. B.M. Lobanov, M. Boris: Automatic discrimination of noisy and quasi periodic speech sounds by the phase plane method, Soviet Physics - Acoustics 16, 353-356 (1970) Original (in Russian) in Akusticheskiy Zhurnal 16, 425-428 (1970)

    Google Scholar 

  69. E. Fisher, J. Tabrikian, S. Dubnov: Generalized likelihood ratio test for voiced-unvoiced decision in noisy speech using the harmonic model, IEEE Trans. Audio Speech Lang. Process. 14, 502-510 (2006)

    Article  Google Scholar 

  70. B.S. Atal, L.R. Rabiner: A pattern recognition approach to voiced-unvoiced-silence classification with applications to speech recognition, IEEE Trans. Acoust. Speech Signal Process. 24, 201-212 (1976)

    Article  Google Scholar 

  71. O. Fujimura: An approximation to voice aperiodicity, IEEE Trans. Acoust. Speech Signal Process. 16, 68-72 (1968)

    Google Scholar 

  72. A.K. Krishnamurthy, D.G. Childers: Two-channel speech analysis, IEEE Trans. Acoust Speech Signal Process. 34, 730-743 (1986)

    Article  Google Scholar 

  73. K.N. Stevens, D.N. Kalikow, T.R. Willemain: A miniature accelerometer for detecting glottal waveforms and nasalization, J. Speech Hear. Res. 18, 594-599 (1975)

    Article  Google Scholar 

  74. V.R. Viswanathan, W.H. Russell: Subjective and objective evaluation of pitch extractors for LPC and harmonic-deviations vocoders (Bolt Beranek and Newman, Cambridge 1984), MA: Report No. 5726

    Google Scholar 

  75. A.J. Fourcin, E. Abberton: First applications of a new laryngograph, Med Biol Illust 21, 172-182 (1971)

    Google Scholar 

  76. D.G. Childers, M. Hahn, J.N. Larar: Silent and voiced/Unvoiced/Mixed excitation (four-way) classification of speech, IEEE Trans. Acoust. Speech Signal Process. 37, 1771-1774 (1989)

    Article  Google Scholar 

  77. E. Mousset, W.A. Ainsworth, J.A.R. Fonollosa: A comparison of several recent methods of fundamental frequency and voicing decision estimation, Proc. ICSLPʼ96 (1996) pp. 1273-1276, http://www.isca-speech.org/archive/icslp_1996

    Google Scholar 

  78. D.A. Krubsack, R.J. Niederjohn: An autocorrelation pitch detector and voicing decision with confidence measures developed for noise-corrupted speech, IEEE Trans. Signal Process. 39, 319-329 (1991)

    Article  Google Scholar 

  79. Y. Xu, X. Sun: Maximum speed of pitch change and how it may relate to speech, J. Acoust. Soc. Am. 111, 1399-1413 (2002)

    Article  Google Scholar 

  80. B.G. Secrest, G.R. Doddington: Postprocessing techniques for voice pitch trackers, Proc. IEEE ICASSP (1982) pp. 172-175

    Google Scholar 

  81. F. Plante, G.F. Meyer, W.A. Ainsworth: A pitch extraction reference database, Proc. EUROSPEECHʼ95 (1995) pp. 837-840, http://www.isca-speech.org/archive/eurospeech_1995

    Google Scholar 

  82. H. Kawahara, H. Katayose, A. de Cheveigné, R.D. Patterson: Fixed point analysis of frequency to instantaneous frequency mapping for accurate estimation of F0 and periodicity, Proc. EUROSPEECHʼ99 (1999) pp. 2781-2784, http://www.isca-speech.org/archive/eurospeech_1999

    Google Scholar 

  83. L.R. Rabiner, M.R. Sambur, C.E. Schmidt: Applications of nonlinear smoothing algorithm to speech processing, IEEE Trans. Acoust. Speech Signal Process. 23, 552-557 (1975)

    Article  Google Scholar 

  84. P. Specker: A powerful postprocessing algorithm for time-domain pitch trackers, Proc. IEEE ICASSP (1984), paper 28B.2

    Google Scholar 

  85. F. Itakura: Minimum prediction residual applied to speech recognition, IEEE Trans. Acoust. Speech Signal Process. 23, 67-72 (1975)

    Article  Google Scholar 

  86. Y.R. Wang, I.J. Wong, T.C. Tsao: A statistical pitch detection algorithm, Proc. IEEE ICASSP (2002) pp. 357-360

    Google Scholar 

  87. Y. Sagisaka, N. Campbell, N. Higuchi (eds.): Computing prosody. Computational models for processing spontaneous speech (Springer, New York 1996)

    MATH  Google Scholar 

  88. P. Bagshaw: Automatic prosodic analysis for computer aided pronunciation teaching (Univ. of Edinburgh, Edinburgh 1993), PhD Thesis http://www.cstr.ed.ac.uk/projects/fda/Bagshaw_PhDThesis.pdf

    Google Scholar 

  89. R.J. Baken: Clinical Measurement of Speech and Voice (Taylor Francis, London 1987)

    Google Scholar 

  90. A. Askenfelt: Automatic notation of played music: The Visa project, Fontes Artis Musicae 26, 109-120 (1979)

    Google Scholar 

  91. Y.M. Cheng, D. OʼShaughnessy: Automatic and reliable estimation of glottal closure instant and period, IEEE Trans. Acoust. Speech Signal Process. 37, 1805-1815 (1989)

    Article  Google Scholar 

  92. W.J. Hess: Determination of glottal excitation cycles in running speech, Phonetica 52, 196-204 (1995)

    Article  Google Scholar 

  93. W.J. Hess: Pitch determination of acoustic signals - an old problem and new challenges, Proc. 18th Intern. Congress on Acoustics, Kyoto (2004), paper Tu2.H.1

    Google Scholar 

  94. B. Yegnanarayana, R. Smits: A robust method for determining instants of major excitations in voiced speech, Proc. IEEE ICASSP (1995) pp. 776-779

    Google Scholar 

  95. M. Brookes, P.A. Naylor, J. Gudnason: A quantitative assessment of group delay methods for identifying glottal closures in voiced speech, IEEE Trans. Audio Speech Language Process. 14, 456-466 (2006)

    Article  Google Scholar 

  96. C.X. Ma, Y. Kamp, L.F. Willems: A Frobenius norm approach to glottal closure detection from the speech signal, IEEE Trans. Speech Audio Process. 2, 258-265 (1994)

    Article  Google Scholar 

  97. L. Du, Z. Hou: Determination of the instants of glottal closure from speech wave using wavelet transform, http://www.icspat.com/papers/329mfi.pdf

  98. K.E. Barner: Colored L-ℓ filters and their application in speech pitch detection, IEEE Trans. Signal Process. 48, 2601-2606 (2000)

    Article  Google Scholar 

  99. J.L. Navarro-Mesa, I. Esquerra-Llucià: A time-frequency approach to epoch detection, Proc. EUROSPEECHʼ95 (1995) pp. 405-408, http://www.isca-speech.org/archive/eurospeech_1995

    Google Scholar 

  100. A. de Cheveigné: Separation of concurrent harmonic sounds: Fundamental frequency estimation and a time-domain cancellation model of auditory processing, J. Acoust. Soc. Am. 93, 3279-3290 (1993)

    Article  Google Scholar 

  101. A.P. Klapuri: Signal processing methods for the automatic transcription of music (Tampere Univ. Technol., Tampere 2004), Ph.D. diss. http://www.cs.tut.fi/sgn/arg/klap/klap_phd.pdf

    Google Scholar 

  102. M. Goto: A predominant F0-estimation method for polyphonic musical audio signals, Proc. 18th Intern. Congress on Acoustics Kyoto (2004), paper Tu2.H.4

    Google Scholar 

  103. T. Tolonen, M. Karjalainen: A computationally efficient multipitch analysis model, IEEE Trans. Speech Audio Process. 8, 708-716 (2000)

    Article  Google Scholar 

  104. H. Kameoka, T. Nishimoto, S. Sagayama: Separation of harmonic structures based on tied Gaussian mixture model and information criterion for concurrent sounds, Proc. IEEE ICASSP (2004), paper AE-P5.9

    Google Scholar 

  105. A.P. Dempster, N.M. Laird, D.B. Rubin: Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Stat. Soc. B 39, 1-38 (1977)

    MathSciNet  MATH  Google Scholar 

  106. L. Yoo, I. Fujinaga: A comparative latency study of hardware and software pitch-trackers, Proc. 1999 Int. Computer Music Conf. (1999) pp. 36-40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang J. Hess Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hess, W.J. (2008). Pitch and Voicing Determination of Speech with an Extension Toward Music Signals. In: Benesty, J., Sondhi, M.M., Huang, Y.A. (eds) Springer Handbook of Speech Processing. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49127-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49127-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49125-5

  • Online ISBN: 978-3-540-49127-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics