Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Electronic materials – conductors, insulators, semiconductors – play an important role in today's technology. They constitute “electrical and electronic devices”, such as radio, television, telephone, electric light, electromotors, computers, etc. From a materials science point of view, the electrical properties of materials characterize two basic processes: electrical energy conduction (and dissipation) and electrical energy storage.

  • Electrical conductivity describes the ability of a material to transport charge through the process of conduction, normalized by geometry. Electrical dissipation comes as the result of charge transport or conduction. Dissipation or energy loss results from the conversion of electrical energy to thermal energy (Joule heating) through momentum transfer during collisions as the charges move.

  • Electrical storage is the result of charge storing energy. This process is dielectric polarization, normalized by geometry to be the material property called dielectric permittivity. As polarization occurs and causes charges to move, the charge motion is also dissipative.

In this chapter, the main methods to characterize the electrical properties of materials are compiled. Sections 9.2 to 9.5 describe the measuring methods under the following headings:

  • Electrical conductivity of metallic materials

  • Electrolytical conductivity

  • Semiconductors

  • Dielectrics

As an introductory overview, in Sect. 9.1 the basic categories of electrical materials are outlined in adopting the classification and terminology of chapter the “Electronic Properties of Materials” of “Understanding Materials Science” by Hummel [9.1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CCD:

digitized with charge-coupled device

DC:

direct-current

DIN:

Deutsches Institut für Normung

DLTS:

deep level transient spectroscopy

FET:

field effect transistors

HTS:

high-temperature superconductors

ISO:

International Organization for Standardization

LC:

liquid chromatography

LTS:

low-temperature superconductors

MIS:

metal–insulator–semiconductor structures

MOS:

metal–oxide–semiconductor

MS:

mass spectrometer

NIST:

National Institute of Standards and Technology

RF:

radiofrequency

SQUID:

superconducting quantum interference device

TDS:

total dissolved solids

WFI:

water for injection

References

  1. R. E. Hummel: Understanding Materials Science, Chap. 11, Electrical Properties of Materials (Springer, New York, Berlin 2004) pp. 185–222

    Google Scholar 

  2. C. H. He, Z. Lu, S. Liu, R. Liu: Cross-conductivity standard for non-ferrous metals, IEEE Trans. IM 44, 181–183 (1995)

    CAS  Google Scholar 

  3. G. Rietveld, C. V. Koijmans, L. C. A. Henderson, M. J. Hall, S. Harmon, P. Warnecke, B. Schumacher: DC conductivity measurements in the van der Pauw geometry, IEEE Trans. IM 52, 449–453 (2003)

    Google Scholar 

  4. L. J. van der Pauw: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Res. Rep. 13, 1–9 (1958)

    Google Scholar 

  5. DIN IEC 468: Method of Measurement of Resistivity of Metallic Materials (Beuth, Berlin 1981)

    Google Scholar 

  6. NPL Report DEM-ES 001: Techniques and materials for the measurement of DC and AC conductivity of non-ferrous metals and alloys, Conductivity, May 2004. The Conductivity project is (has been) financially supported by an EU grant (contract no. G6RD-CT-2000-00210) under the EU Growth programme, part of the 5th Framework programme

    Google Scholar 

  7. M. J. Hall, L. C. A. Henderson, G. Ashcroft, S. Harmon, P. Warnecke, B. Schumacher, G. Rietveld: Discrepancies between the DC and AC measurement of low frequency electrical conductivity, Dig. Conf. Proc. Electrom. Meas. CPEM 2004, London (2004) pp. 34–35

    Google Scholar 

  8. A. C. Lynch, A. E. Drake, C. H. Dix: Measurement of eddy-current conductivity, IEE Proc. Sci. Meas. Technol. 130, 254–260 (1983)

    Google Scholar 

  9. H. Kamerlingh Onnes: The superconductivity of mercury, Leiden Commun. 122b, 1240 (1911)

    Google Scholar 

  10. J. Bardeen, L. N. Cooper, J. R. Schrieffer: Theory of superconductivity, Phys. Rev. 108, 1175–1204 (1957)

    Article  CAS  Google Scholar 

  11. J. G. Bednorz, K. A. Müller: Possible high-T c superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64, 189–193 (1986)

    Article  CAS  Google Scholar 

  12. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, L. R. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, C. W. Chu: Superconductivity in a new mixed phase Y-Ba-Cu-O system at ambient pressure, Phys. Rev. Lett. 58, 908–910 (1987)

    Article  CAS  Google Scholar 

  13. C. N. R. Rao, R. Nagarajan, R. Vijayaraghavan: Synthesis of cuprate superconductors, Supercond. Sci. Technol. 6, 1–22 (1993)

    Article  CAS  Google Scholar 

  14. J. Clarke, A. I. Braginski: The SQUID Handbook, Fundamentals and Technology of SQUIDs and SQUID Systems, Vol. 1 (Wiley, New York 2004)

    Google Scholar 

  15. B. D. Josephson: Possible new effects in superconductive tunneling, Phys. Lett. 1, 251–253 (1962)

    Article  Google Scholar 

  16. R. Pöpel: The Josephson effect and voltage standards, Metrologia 29, 153–174 (1992)

    Article  Google Scholar 

  17. S. A. Keys, D. P. Hampshire: Characterization of the transport critical current density for conductor applications, Handbook of Superconducting Materials II : Characterization, Applications and Cryogenics, ed. by D. A. Cardwell, D. S. Ginley (IOPP, London 2003) p. 1297

    Google Scholar 

  18. W. Meissner, R. Ochsenfeld: Ein neuer Effekt bei Eintritt der Supraleitfähigkeit, Naturwiss. 21, 787 (1933) (in German)

    Article  Google Scholar 

  19. DIN EN IEC 61788-1: Superconductivity – Critical, Current Measurement – DC Critical Current of Cu/Nb-Ti Composite Superconductors (Beuth, Berlin 1999)

    Google Scholar 

  20. P. W. Atkins: Physikalische Chemie, 3rd edn. (VCH, Weinheim 1990) pp. 3834–846 German transl.

    Google Scholar 

  21. C. H. Hamann, W. Vielsich: Elektrochemie, 3rd edn. (VCH, Weinheim 1998)

    Google Scholar 

  22. J. M. G. Barthel, H. Krienke, W. Kunz: Physical Chemistry of Electrolyte Solutions – Modern Aspects; Top. Phys. Chem., Vol. 5, ed. by J. M. G. Barthel, H. Krienke, W. Kunz (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  23. J. O. M. Bockris, A. K. N. Reddy, K. N. Amlya: Modern Electrochemistry 1, Ionics, 2nd edn. (Springer, Berlin, Heidelberg 1989) p. 379

    Google Scholar 

  24. O. F. Mohammed, D. Pines, J. Dreyer, E. Pines, E. T. J. Nibbering: Sequential proton transfer through water bridges in acid-base reactions, Science 310, 83–86 (2005)

    Article  CAS  Google Scholar 

  25. F. Brinkmann, N. E. Dam, E. Deák, F. Durbiano, E. Ferrara, J. Fükö, H. D. Jensen, M. Máriássy, R. H. Shreiner, P. Spitzer, U. Sudmeier, M. Surdu: Primary methods for the measurement of electrolytic conductivity, Accred. Qual. Assur. 8, 346–353 (2003)

    Article  CAS  Google Scholar 

  26. United States Pharmacopeia: USP 27-NF 22 (U.S. Pharmacopoeia, Rockville 2004)

    Google Scholar 

  27. ISO 7888: 1985 Water Quality: Determination of electrical conductivity (ISO, Geneva 1985)

    Google Scholar 

  28. Y. C. Wu, K. W. Pratt, W. F. Koch: Determination of the absolute specific conductance of primary standard KCl solutions, J. Solution Chem. 18, 515–528 (1989)

    Article  CAS  Google Scholar 

  29. G. Jones, S. M. Christian: The measurement of the conductance of electrolytes. VI. Galvanic polarization by alternating current, J. Am. Chem. Soc. 57, 272–284 (1935)

    Article  CAS  Google Scholar 

  30. P. Spitzer, U. Sudmeier: Electrolytic conductivity—A new subject field at PTB, Report on the 146 PTB Seminar Electrolytic Conductivity, ed. by P. Spitzer, U. Sudmeier (PTB-ThEx-15, Physikalisch-Technische Bundesanstalt, Braunschweig 2000) pp. 39–47

    Google Scholar 

  31. P. Saulnier: Absolute determination of the conductivity of electrolytes. Double differential cell with adjustable constant, J. Solution Chem. 8, 835–845 (1979)

    Article  CAS  Google Scholar 

  32. P. Saulnier, J. Barthel: Determination of electrolytic conductivity of a 0.01 D aqueous potassium chloride solution at various temperatures by an absolute method, J. Solution Chem. 8, 847–851 (1979)

    Article  CAS  Google Scholar 

  33. F. Löffler: Design and production of the electric conductivity cell, Report on the 146 PTB Seminar Electrolytic Conductivity, ed. by P. Spitzer, U. Sudmeier (PTB-ThEx-15, Physikalisch Technische Bundesanstalt, Braunschweig 2000) pp. 49–64

    Google Scholar 

  34. Y. C. Wu, W. F. Koch, D. Feng, L. A. Holland, A. E. Juhász, A. Tomek: A DC method for the absolute dtermination of conductivities of the primary standard KCl solutions from 0 °C to 50 °C, J. Res. Natl. Inst. Stand. Technol. 99, 241–224 (1994)

    CAS  Google Scholar 

  35. D. F. Evans: The measurement and interpretation of electrolytic conductivity, Techn. Electrochem. 2 (Wiley, New York 1973)

    Google Scholar 

  36. T. S. Light: Temperature dependence and measurement of resistivity of pure water, Anal. Chem. 56, 1138–1142 (1994)

    Article  Google Scholar 

  37. Radiometer Analytical: Conductivity Theory and Practice, Radiometer Analytical, Villeurbanne, France www.radiometer-analytical.com

    Google Scholar 

  38. European Pharmacopeia: Conductivity, EP 4, 2.2.38 (European Pharmacopeia, Strasbourg 2004) (http://www.pheur.org/)

    Google Scholar 

  39. W. L. Marshall: Electrical conductance of liquid and supercritical water evaluated from 0 °C and 0.1 MPa to high temperatures and pressures. Reduced-state relationships, J. Chem. Eng. Data 32, 221–226 (1987)

    Article  CAS  Google Scholar 

  40. R. D. Thornton, T. S. Light: A new approach to accurate resistivity measurement of high purity water, Ultrapure Water 7 (1989)

    Google Scholar 

  41. P. Spitzer, B. Rossi, Y. Gignet, S. Mabic, U. Sudmeier: New approach to calibrating conductivity meters in the low conductivity range, Accred. Qual. Assur. 10, 78–81 (2005)

    Article  CAS  Google Scholar 

  42. H. D. Jensen, J. Sørensen: Electrolytic conductivity at DFM—results and experiences, Report on the 146 PTB Seminar Electrolytic Conductivity, ed. by P. Spitzer, U. Sudmeier (PTB-ThEx-15, Physikalisch-Technische Bundesanstalt, Braunschweig 2000) pp. 153–13

    Google Scholar 

  43. D. C. Look: Electrical Characterization of GaAs Materials and Devices (Wiley, Chichester 1989)

    Google Scholar 

  44. P. Blood, J. W. Orton: The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, New York 1992)

    Google Scholar 

  45. E. B. Hansen: On the influence of shape and variations in conductivity of the sample on four-point measurements, Appl. Sci. Res. B 8, 93–104 (1960)

    Article  Google Scholar 

  46. R. L. Petritz: Theory of an experiment for measuring the mobility and density of carriers in the space-charge region of a semiconductor surface, Phys. Rev. 110, 1254–1262 (1958)

    Article  CAS  Google Scholar 

  47. L. J. van der Pauw: A method of measuring specific resistivity and hall effect of discs of arbitrary shape, Philips Res. Rep. 13, 1–9 (1958)

    Google Scholar 

  48. S. M. Sze: Physics of Semiconductor Devices (Wiley, Chichester 1981)

    Google Scholar 

  49. K. Ziegler, E. Klausmann, S. Kar: Determination of the semiconductor doping profile right up to its surface using the MIS capacitor, Solid-State Electron. 18, 189–198 (1975)

    Article  CAS  Google Scholar 

  50. D. P. Kennedy, P. C. Murley, W. Kleinfelder: On the measurement of impurity distributions in silicon by the differential capacitance technique, IBM J. Res. Dev, 399–409 (Sept. 1968)

    Google Scholar 

  51. D. P. Kennedy, R. P. O'Brian: On the measurement of impurity atom distributions by the differential capacitance technique, IBM J. Res. Dev. 212–214 (March 1969)

    Google Scholar 

  52. W. C. Johnson, P. T. Panousis: The influence of Debye length on the CV-measurement of doping profiles, IEEE Trans. ED 18, 956–973 (1971)

    Google Scholar 

  53. W. A. Harrison: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York 1989)

    Google Scholar 

  54. S.R. Forest, R. F. Leheny, R. E. Nahory, M. A. Pollack: In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling, Appl. Phys. Lett. 37(3), 322–325 (1980)

    Article  Google Scholar 

  55. A. Goetzberger, B. McDonald, R. H. Haitz, R. M. Scarlett: Avalanche effects in silicon p-n junction. II. structurally perfect junctions, J. Appl. Phys. 34, 1591 ff. (1963)

    Article  Google Scholar 

  56. G. L. Miller, D. V. Lang, L. C. Kimerling: Capacitance transient spectroscopy, Ann. Rev. Mater. Sci. 7, 377–448 (1977)

    Article  CAS  Google Scholar 

  57. D. V. Lang: Deep-level transient spectroscopy, J. Appl. Phys. 45(7), 3023–3032 (1974)

    Article  CAS  Google Scholar 

  58. R. N. Hall: Electron-hole recombination in germanium, Phys. Rev. 87, 387 (1952)

    Article  CAS  Google Scholar 

  59. W. Shockley, W. T. Read: Statistics of the recombinations of holes and electrons, Phys. Rev. 87, 835–842 (1952)

    Article  CAS  Google Scholar 

  60. D. L. Partin, J. W. Chen, A. G. Milnes, L. F. Vassamillet: J. Appl. Phys. 50(11), 6845 ff (1979)

    Article  CAS  Google Scholar 

  61. E. H. Rhoderick: Metal-Semiconductor Contacts (Clarendon, Oxford 1980)

    Google Scholar 

  62. A. Piotrowska, A. Guivarc'h, G. Pelous: Ohmic contacts to III-V compound semiconductors: A review of fabrication techniques, Solid-State Electron. 26(3), 179–197 (1983)

    Article  CAS  Google Scholar 

  63. H. H. Berger: Models for contacts to planar devices, Solid-State Electron. 15, 145–158 (1972)

    Article  Google Scholar 

  64. R. H. Cox, H. Strack: Ohmic contacts for GaAs devices, Solid-State Electron. 10, 1213–1218 (1967)

    Article  Google Scholar 

  65. P. W. Debye: Polar Molecules (Chemical Catalog, New York 1927)

    Google Scholar 

  66. C. P. Smyth: Dielectric Behavior and Structure (McGraw Hill, New York 1955)

    Google Scholar 

  67. K. S. Cole, R. H. Cole: Absorption in dielectrics dispersion, J. Chem. Phys. 9, 341 (1941)

    Article  CAS  Google Scholar 

  68. H. Fröhlich: Theory of Dielectrics (Oxford Univ. Press, Oxford 1949)

    Google Scholar 

  69. N. Hill, W. E. Vaughman, A. H. Price, M. M. Davies: Dielectric Properties and Molecular Behavior (Van Nostrand Reinhold, New York 1969)

    Google Scholar 

  70. C. J. F. Bottcher, P. Bordewijk: Theory of Electric Polarization (Elsevier, New York 1996)

    Google Scholar 

  71. N. G. McCrum, B. E. Read, G. Williams: Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York 1967)

    Google Scholar 

  72. J. P. Runt, J. J. Fitzgerald: Dielectric Spectroscopy of Polymeric Materials (Am. Chem. Soc., Washington 1997)

    Google Scholar 

  73. D. W. Davies: The Theory of the Electric and Magnetic Properties of Molecules (Wiley, New York 1969)

    Google Scholar 

  74. A. R. von Hippel (ed.): Dielectric Materials Applications (Wiley, New York 1954)

    Google Scholar 

  75. H. E. Bussey: Measurement of RF properties of materials, A survey, Proc. IEEE 55(5), 1046–1053 (1967)

    Article  Google Scholar 

  76. S. O. Nelson: Dielectric properties of agricultural products, IEEE Trans. El. Insul. 26, 845–869 (1991)

    Article  CAS  Google Scholar 

  77. A. W. Kraszewski, S. Trabelsi, S. O. Nelson: Broadband microwave wheat permittivity meaurements in free space, J. Microwave Power Electromag. Energy 37, 41–54 (2002)

    CAS  Google Scholar 

  78. F. Kremer, A. Schönhals: Broadband Dielectric Spectroscopy (Springer-Verlag, Berlin, Heidelberg 2003)

    Google Scholar 

  79. J. C. Maxwell: An Elementary Treatise on Electricity, 2nd edn. (Clarendon, Oxford 1888)

    Google Scholar 

  80. S. Havriliak, S. J. Negami: A complex plane analysis of α-dispersions in some polymer systems, J. Polym. Sci. C: Polym. Symp. 14, 99 (1966)

    Article  Google Scholar 

  81. D. W. Davidson, R. H. Cole: Dielectric relaxation in glicerine, J. Chem. Phys. 18, 1417 (1950)

    Article  CAS  Google Scholar 

  82. V. V. Novikov, V. P. Privalko: Temporal fractal model for the anomalous dielectric relaxation of inhomogeneous media with chaotic structure, Phys. Rev. E 64, 031504 (2001)

    Article  CAS  Google Scholar 

  83. V. V. Daniel: Dielectric Relaxation (Academic, London 1967)

    Google Scholar 

  84. A. K. Jonsher: Dielectric Relaxation in Solids (Chelsea Dielectrics, London 1983)

    Google Scholar 

  85. F. Alvarez, A. Alegria, J. Colmenero: A new method for obtaining distribution of relaxation times from frequency relaxation spectra, J. Chem. Phys. 103, 798–806 (1995)

    Article  CAS  Google Scholar 

  86. H. Schäfer, E. Sternin, R. Stannarius, M. Arndt, F. Kremer: Novel approach to the analysis of broadband dielectric spectra, Phys. Rev. Lett. 76, 2177–2180 (1996)

    Article  Google Scholar 

  87. L. Hartshorn, W. H. Ward: The measurement of the permittivity and power factor of dielectrics from 104 to 108 cycles per second, J. Inst. Electr. Eng. 79, 567–609 (1936)

    Google Scholar 

  88. Agilent Technologies: Accessories Selection Guide For Impedance Measurements, Dielectric Test Fixtures (Agilent Technologies, Palo Alto 2001) p. 38 www.agilent.com

    Google Scholar 

  89. Application Note 1369-1: Agilent Solutions for Measuring Permittivity and Permeability with LCR Meters and Impedance Analyzers (Agilent Technologies, Palo Alto 2001) www.agilent.com

    Google Scholar 

  90. ASTM D 150-98: Standard Test Method for AC Loss Characteristics and Permittivity of Solid Electrical Insulating Materials (ASTM, West Conshohocken 1998) www.astm.org

    Google Scholar 

  91. D. A. Gray: Handbook of Coaxial Microwave Measurements (General Radio, West Concord. 1968)

    Google Scholar 

  92. S. Ramo, J. R. Whinnery, T. Van Duzer: Fields and Waves in Communication Electronics (Wiley, New York 1994)

    Google Scholar 

  93. Agilent Technologies: RF and Microwave Test Accessories (Agilent Technologies, Palo Alto 2006) www.agilent.com

    Google Scholar 

  94. J. P. Grant, R. N. Clarke, G. T. Symm, N. Spyrou: Acritical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements, J. Phys. E Sci. Instrum. 22, 757–770 (1989)

    Article  CAS  Google Scholar 

  95. Agilent Technologies: 85070C Dielectric Probe Kit (Agilent Technologies, Palo Alto 2005) www.agilent.com

    Google Scholar 

  96. M. A. Stuchly, S. S. Stuchly: Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies: A review, IEEE Trans. Instrum. Meas 29, 176–183 (1980)

    Article  Google Scholar 

  97. M. F. Iskander, S. S. Stuchly: Fringing field effect in the lumped-capacitance method for permittivity measurements, IEEE Trans. Instrum. Meas 27, 107–109 (1978)

    Article  Google Scholar 

  98. J. K. Hunton: Analysis of microwave techniques by means of signal flow graphs, IRE Trans. Microwave Theory Tech. 8, 206–212 (1960)

    Article  Google Scholar 

  99. K. Kurokawa: Power waves and the scattering matrix, IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965)

    Article  Google Scholar 

  100. A. M. Nicolson: Broad-band microwave transmission characteristics from a single measuramant of the transient response, IEEE Trans. Instrum. Meas. 19, 337–382 (1970)

    Article  Google Scholar 

  101. S. S. Stuchly, M. Matuszewski: A combined total reflection-transmission method in application to dielectric spectroscopy, IEEE Trans. Instrum. Meas 27, 285–288 (1978)

    Article  Google Scholar 

  102. Product Note 8510-3: Measuring the dielectric constant of solids with the HP network analyzer (Hewlett Packard, Palo Alto 1985)

    Google Scholar 

  103. J. Baker-Jarvis, R. G. Geyer, P. D. Domich: A nonlinear least-squares with causality constraints applied to transmission line permittivity, IEEE Trans. Intrum. Meas 41, 646–652 (1992)

    Article  Google Scholar 

  104. J. Obrzut, A. Anopchenko: Input impedance of a coaxial line terminated with a complex gap capacitance – numerical experimental analysis, IEEE Trans. Instrum. Meas 53, 1197–1202 (2004)

    Article  Google Scholar 

  105. Institute for Printed Circuits: Standard Test Method Manual, TM-650, Method 2.5.5.10, High frequency testing to determine permittivity and loss tangent of embedded passive materials (IPC, Bannockburn 2005) www.ipc.org

    Google Scholar 

  106. ASTM D2520-01: Standard Test Methods for Complex Permittivity (Dielectric Constant) of Solid Electrical Insulating Materials at Microwave Frequencies and Temperatures to 1650 °C, Test method B-Resonant Cavity Perturbation Method (ASTM, West Conshohocken 1998) www.astm.org

    Google Scholar 

  107. G. Kent: Nondestructive permittivity measurements of substrates, IEEE Trans. Instrum. Meas. 45, 102–106 (1996)

    Article  Google Scholar 

  108. S. Maj, M. Pospieszalski: Acomposite multilayered cylindrical dielectric resonator, IEEE MTT-S Digest, 190–192 (1984)

    Google Scholar 

  109. J. Krupka, K. Derzakowski, A. Abramowicz, M. E. Tobar, R. G. Geyer: Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials, IEEE Trans. Microwave Theory Tech. 47, 752–759 (1999)

    Article  Google Scholar 

  110. G. I. Woolaver: Accurately measure dielectric constant of soft substrates, Microwave and RF 24, 153–158 (1990)

    Google Scholar 

  111. S. S. Stuchly, M. A. Rzepecka, M. F. Iskander: Permittivity measurements at microwave frequencies using lumped elements, IEEE Trans Instr. Meas 23, 56–62 (1974)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernd Schumacher Dr. , Heinz-Gunter Bach Ph.D. , Petra Spitzer or Jan Obrzut Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Schumacher, B., Bach, HG., Spitzer, P., Obrzut, J. (2006). Electrical Properties. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_9

Download citation

Publish with us

Policies and ethics