Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

If materials – solids, liquids or gases – are heated or cooled, many of their properties change. This is due to the fact that thermal energy supplied to or removed from a specimen will change either the kinetic or the potential energy of the constituent atoms or molecules. In the first case, the temperature of the specimen is changed, since temperature is a measure of the average kinetic energy of the elementary particles of a sample. In the second case, e.g. the binding energy of these particles is altered, which may cause a phase transition.

Thermal properties are associated with a material-dependent response when heat is supplied to a solid body, a liquid, or a gas. This response might be a temperature increase, a phase transition, a change of length or volume, an initiation of a chemical reaction or the change of some other physical or chemical quantity.

Basically, almost all of the other materials properties treated in Part C, namely mechanical, electrical, magnetic, or optical properties, are temperature-dependent (except a material that is especially designed to be resistant to temperature variations). For example, temperature influences mechanical hardness, electrical resistance, magnetism, or optical emissivity. Temperature is also of importance to the characterization of material performance (Part D) as it influences materials integrity when subject to corrosion, friction and wear, biogenic impact or material–environment interactions. Temperature effects related to these areas are dealt with in the other chapters of this book dedicated to those topics. Only if those properties are needed to explain measuring methods within this chapter are they are outlined in the following sections.

In this chapter, a number of materials properties are selected and called thermal properties, where the effect of thermal energy treatment plays the major role compared to electrical, magnetic, chemical or other effects. The presentation of measurement methods for thermal properties is organized into five parts, referring to:

  1. 1.

    Thermal transport properties, such as thermal conductivity, thermal diffusivity or specific heat capacity, characterizing the ability of materials to conduct, transfer, store and release heat.

  2. 2.

    Phase transitions and chemical reactions of materials. Various calorimetric methods are presented, which are used to investigate e.g. phase transitions, adsorption, and mixing processes. Typical examples are first-order transitions such as boiling and melting, but also combustion and solution processes.

  3. 3.

    Physical properties, which are affected when heat is supplied to a body. The determination of the temperature dependence of these quantities requires knowledge of thermal measurement methods. Among the many different physical quantities the most important for applications in materials science and engineering are length and its relation to thermal expansion.

  4. 4.

    Thermogravimetry, which is important in chemical analysis, see Chap. 4.

  5. 5.

    Temperature measurement methods, since these techniques are essential for all the other measurements described above. Temperature scales and the principles, types and applications of temperature sensors are compiled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CIPM:

International Committee for Weights and Measures

CTE:

coefficient of thermal expansion

DSC:

differential scanning calorimetry

LVDT:

linear variable differential transformer

MS:

mass spectrometer

NIST:

National Institute of Standards and Technology

NMR:

nuclear magnetic resonance

SQUID:

superconducting quantum interference device

References

  1. K. Maglić, A. Cezairliyan, V. E. Peletsky (Eds.): Compendium of Thermophysical Property Measurement Methods, Vol. 1: Survey of Measurement Techniques (1984), Vol. 2: Recommended Measurement Techniques and Practices (1992) (Plenum, New York 1984/1992)

    Google Scholar 

  2. M. J. Assael, M. Dix, K. Gialou, L. Vozár, W. A. Wakeham: Application of the transient hot-wire technique to the measurement of the thermal conductivity of solids, Int. J. Thermophys. 23, 615–633 (2002)

    Article  CAS  Google Scholar 

  3. S. E. Gustafsson, E. Karawacki, M. N. Khan: Transient hot-strip method for simultaneous measuring thermal conductivity, thermal diffusivity of solids, liquids, J. Appl. Phys. 12, 1411–1421 (1979)

    CAS  Google Scholar 

  4. U. Hammerschmidt, W. Sabuga: Transient hot strip (THS) method: Uncertainty assessment, Int. J. Thermophys. 21, 217–248 (2000)

    Article  CAS  Google Scholar 

  5. H. Watanabe: Further examination of the transient hot-wire method for the simultaneous measurement of thermal conductivity, thermal diffusivity, Metrologia 39, 65–81 (2002)

    Article  CAS  Google Scholar 

  6. W. J. Parker, J. R. Jenkins, P. C. Butler, B. L. Abbott: Flash method of determining heat capacity, thermal conductivity, J. Appl. Phys. 32, 1679–1684 (1961)

    Article  CAS  Google Scholar 

  7. M. Ogawa, K. Mukai, T. Fukui, T. Baba: The development of a thermal diffusivity reference material using alumina, Meas. Sci. Technol. 12, 2058–2063 (2001)

    Article  CAS  Google Scholar 

  8. B. Hay, J.-R. Filtz, J. Hameury, L. Rongione: Uncertainty of thermal diffusivity measurements by laser flash method, Tech. Dig. 15th Symposium on Thermophysical Properties, Boulder (2003)

    Google Scholar 

  9. L. Vozár, W. Hohenauer: Uncertainty of the thermal diffusivity measurement using the laser flash method, Tech. Dig. 15th Symposium on Thermophysical Properties, Boulder (2003)

    Google Scholar 

  10. D. P. Almond, P. M. Patel: Photothermal Science and Techniques (Kluwer Academic, Dordrecht 1996)

    Google Scholar 

  11. D. L. Martin: “Tray” type calorimeter for the 15–300 K temperature range: Copper as a specific heat standard in this range, Rev. Sci. Instrum. 58, 639–646 (1987)

    Article  CAS  Google Scholar 

  12. D. A. Ditmars, S. Ishihara, S. S. Chang, G. Bernstein, E. D. West: Enthalpy, heat-capacity standard reference material: Synthetic sapphire (α-Al2O3) from 10 to 2250 K, J. Res. Nat. Bur. Stand. 87, 159–163 (1982)

    CAS  Google Scholar 

  13. S. Rudtsch: Uncertainty of heat capacity measurement with differential scanning calorimeters, Thermochim. Acta 382, 17–25 (2002)

    Article  CAS  Google Scholar 

  14. F. Righini, G. C. Bussolino: Pulse calorimetry at high temperatures, Thermochim. Acta 347, 93–102 (2000)

    Article  CAS  Google Scholar 

  15. S. M. Sarge, G. W. H. Höhne, H. K. Cammenga, W. Eysel, E. Gmelin: Temperature, heat, heat flow rate calibration of scanning calorimeters in the cooling mode, Thermochim. Acta 361, 1–20 (2000)

    Article  CAS  Google Scholar 

  16. D. G. Archer, D. R. Kirklin: NIST, standards for calorimetry, Thermochim. Acta 347, 21–30 (2000)

    Article  CAS  Google Scholar 

  17. S. Stølen, F. Grønvold: Critical assessment of the enthalpy of fusion of metals used as enthalpy standards at moderate, high temperatures, Thermochim. Acta 327, 1–32 (1999)

    Article  Google Scholar 

  18. R. Sabbah, An Xu-wu, J. S. Chickos, M. V. Roux, L. A. Torres: Reference materials for calorimetry, differential thermal analysis, Thermochim. Acta 331, 93–204 (1999)

    Article  CAS  Google Scholar 

  19. J. P. McCullough, D. W. Scott (Eds.): Calorimetry of Nonreacting Systems, Vol. 1, Experimental Thermodynamics (Butterworth, London 1968)

    Google Scholar 

  20. B. LeNeindre, B. Vodar (Eds.): Experimental Thermodynamics of Non-reacting Fluids, Vol. II (Butterworth, London 1975)

    Google Scholar 

  21. M. Braun, R. Kohlhaas, O. Vollmer: Zur Hochtemperatur-Kalorimetrie von Metallen, Z. Angew. Phys. 25, 365–372 (1968)

    CAS  Google Scholar 

  22. G. W. H. Höhne, W. Hemminger, H.-J. Flammersheim: Differential Scanning Calorimetry, 2nd edn. (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  23. G. W. H. Höhne, K. Blankenhorn: High pressure DSC investigations on n-alkanes, n-alkane mixtures and polyethylene, Thermochim. Acta 238, 351–370 (1994)

    Article  Google Scholar 

  24. G. R. Tryson, A. R. Shultz: A calorimetric study of acrylate photopolymerization, J. Polym. Sci.: Polym. Phys. Ed. 17, 2059–2075 (1979)

    Article  CAS  Google Scholar 

  25. P. L. Privalov, V. V. Plotnikov: Three generations of scanning microcalorimeters for liquids, Thermochim. Acta 139, 257–277 (1989)

    Article  CAS  Google Scholar 

  26. V. V. Plotnikov, J. M. Brandts, L. N. Liu, J. F. Brandts: A new ultrasensitive scanning calorimeter, Anal. Biochem. 250, 237–244 (1997)

    Article  CAS  Google Scholar 

  27. S. M. Sarge, W. Hemminger, E. Gmelin, G. W. H. Höhne, H. K. Cammenga, W. Eysel: Metrologically based procedures for the temperature, heat, heat flow rate calibration of DSC, J. Therm. Anal. 49, 1125–1134 (1997)

    Article  CAS  Google Scholar 

  28. D. A. Ditmars, T. B. Douglas: Measurement of the relative enthalpy of pure α-Al2O3 (NBS heat capacity, enthalpy standard reference material No. 720) from 273 to 1173 K, J. Res. Ntl. Bur. Stand. 75, 401–420 (1971)

    CAS  Google Scholar 

  29. K. N. Marsh, P. A. G. O'Hare: Solution Calorimetry, Vol. IV, Experimental Thermodynamics (Blackwell Science, Oxford 1994)

    Google Scholar 

  30. R. Anderson, J. M. Prausnitz: High precision, semimicro, hydrostatic calorimeter for heats of mixing of liquids, Rev. Sci. Instrum. 32, 1224–1229 (1961)

    Article  CAS  Google Scholar 

  31. P. Picker, C. Jolicoeur, J. E. Desnoyers: Differential isothermal microcalorimeter: Heats of mixing of aqueous NaCl, KCl solutions, Rev. Sci. Instrum. 39, 676–680 (1968)

    Article  CAS  Google Scholar 

  32. J. J. Christensen, D. L. Hansen, R. M. Izatt, D. J. Eatough, R. M. Hart: Isothermal, isobaric, elevated temperature, high-pressure, flow calorimeter, Rev. Sci. Instrum. 52, 1226–1231 (1981)

    Article  CAS  Google Scholar 

  33. F. D. Rossini (Ed.): Measurement of Heats of Reaction, Vol. 1, Experimental Thermochemistry (Interscience, New York 1956)

    Google Scholar 

  34. H. A. Skinner (Ed.): Experimental Thermochemistry, Vol. II (Interscience, New York 1962)

    Google Scholar 

  35. J. D. Cox, G. Pilcher: Thermochemistry of Organic and Organometallic Compounds (Academic, London 1970)

    Google Scholar 

  36. S. Sunner, M. Månsson: Combustion Calorimetry, Vol. 1, Experimental Thermodynamics (Pergamon, Oxford 1979)

    Google Scholar 

  37. D. R. Kirklin: Enthalpy of combustion of acetylsalicylic acid, J. Chem. Thermodyn. 32, 701–709 (2000)

    Article  CAS  Google Scholar 

  38. P. Ulbig, D. Hoburg: Determination of the calorific value of natural gas by different methods, Thermochim. Acta 382, 27–35 (2002)

    Article  CAS  Google Scholar 

  39. A. Dale, C. Lythall, J. Aucott, C. Sayer: High precision calorimetry to determine the enthalpy of combustion of methane, Thermochim. Acta 382, 47–54 (2002)

    Article  CAS  Google Scholar 

  40. R. E. Taylor, C. Y. Ho (Ed.): Thermal Expansion of Solids (ASM International, Materials Park 1998)

    Google Scholar 

  41. W. Gorski: Interferometrische Bestimmung der thermischen Ausdehnung von synthetischem Korund und seine Verwendung als Referenzmaterial, PTB-Bericht, PTB–W–59 (1994)

    Google Scholar 

  42. J. D. J. James, J. A. Spittle, S. G. R. Brown, R. W. Evans: A review of measurement techniques for the thermal expansion coefficient of metals, alloys at elevated temperatures, Meas. Sci. Technol. 12 (2001) R1-R15

    Google Scholar 

  43. T. A. Hahn: Thermal expansion of copper from 20 to 800 K – standard reference material 736, J. Appl. Phys. 41, 5096–5101 (1970)

    Article  CAS  Google Scholar 

  44. A. P. Miiller, A. Cezairliyan: Thermal expansion of molybdenum in the range 1500–2800 K by a transient interferometric technique, Int. J. Thermophys. 6, 695–704 (1985)

    Article  CAS  Google Scholar 

  45. H. Watanabe, N. Yamada, M. Okaji: Development of a laser interferometric dilatometer for measurements of thermal expansion of solids in the temperature range 300 to 1300 K, Int. J. Thermophys. 26, 543–554 (2002)

    Article  Google Scholar 

  46. H. Watanabe, N. Yamada, M. Okaji: Laser interferometric dilatometer applicable to temperature range from 1300 to 2000 K, Int. J. Thermophys. 22, 1185–1200 (2001)

    Article  CAS  Google Scholar 

  47. M. Okaji, N. Yamada, H. Moriyama: Ultra-precise thermal expansion measurements of ceramic, steel gauge blocks with an interferometric dilatometer, Metrologia 37, 165–171 (2000)

    Article  Google Scholar 

  48. N. Yamada, R. Abe, M. Okaji: A calibration method for measuring thermal expansion with a push-rod dilatometer, Meas. Sci. Technol. 12, 2121–2129 (2001)

    Article  CAS  Google Scholar 

  49. M. Maciejewski, C. A. Müller, R. Tschan, W.-D. Emmerich, A. Baiker: Novel pulse thermal analysis method, its potential for investigating gas–solid reaction, Thermochim. Acta 295, 167–182 (1997)

    Article  CAS  Google Scholar 

  50. M. Brown (Ed.): Handbook of Thermal Analysis and Calorimetry, Vol. 1, Principle and Practice (Elsevier, Amsterdam 1998)

    Google Scholar 

  51. Bureau International des Poids et Mésures (BIPM): Supplementary Information for the International Temperature Scale of 1900 (BIPM, Sèvres 1997) pp. 92–822

    Google Scholar 

  52. T. J. Quinn: Temperature, 2nd edn. (Academic, London 1990)

    Google Scholar 

  53. J. V. Nicholas, D. R. White: Traceable Temperatures (Wiley, Chichester 2001)

    Book  Google Scholar 

  54. Comité International des Poids et Mésures (CIPM): Report on the 89th meeting (BIPM, Sèvres October 2000)

    Google Scholar 

  55. F. Pobell: Matter and Methods at Low Temperatures (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  56. R. C. Richardson, E. N. Smith (Eds.): Experimental Techniques in Condensed Matter Physics at Low Temperatures (Addison-Wesley, Reading 1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang Buck or Steffen Rudtsch Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Buck, W., Rudtsch, S. (2006). Thermal Properties. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_8

Download citation

Publish with us

Policies and ethics