Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Most fluids, gaseous or liquid, are transparent media, and their motion remains invisible to the human eye during direct observation. Techniques allowing visualization of the flow, usually referred to as flow visualization, are discussed in this chapter. A great variety of such methods is known that enable one to make fluid flows visible, in the fluid mechanical laboratory, in industrial environments, and for field experiments. These methods rely mostly on the addition of a tracer material to the flowing fluid, e.g. dye or smoke, and what is then observable is merely the motion of the tracer. Differences between the motion of the tracer and that of the fluid are aimed at being minimal. Presented in this chapter are surveys of available tracer materials, techniques of introducing the tracer to the flow, techniques of proper illumination of the flow scene, methods of providing optical access to the flow, and recording of the observable information. Some of the flow visualization methods provide qualitative information on particular flow patterns, others allow to measure the flow velocity quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

CLSM:

confocal laser scanning microscopy

DOE:

diffractive optical element

ISL:

Institute of Saint Louis

LIF:

laser-induced fluorescence

MRI:

magnetic resonance imaging

NMR:

nuclear magnetic resonance

PIV:

particle image velocimetry

UV:

ultraviolet

References

  1. H.W. Liepmann: The rise and fall of ideas in turbulence, Am. Scientist 67, 221–228 (1979)

    MathSciNet  Google Scholar 

  2. W. Merzkirch: Flow Visualization, 2nd edn. (Academic, Orlando 1987)

    MATH  Google Scholar 

  3. W.-J. Yang (Ed.): Handbook of Flow Visualization (Hemisphere, New York 1989)

    Google Scholar 

  4. M. Van Dyke: An Album of Fluid Motion (Parabolic, Stanford 1982)

    Google Scholar 

  5. Y. Nakayama, W.A. Woods, D.G. Clark (Eds.): Visualized Flow (Pergamon, Oxford 1988)

    Google Scholar 

  6. J. Flow Visualization and Image Processing (Begell House, New York since 1993)

    Google Scholar 

  7. R. Budwig: Refractive index matching methods for liquid flow investigations, Exp. Fluids 17, 350–355 (1994)

    Article  Google Scholar 

  8. H. Werle: Hydrodynamic flow visualization, Annu. Rev. Fluid Mech. 5, 361–382 (1973)

    Article  Google Scholar 

  9. R. Breidenthal: Structure in turbulent mixing layers and wakes using a chemical reaction, J. Fluid Mech. 109, 1–24 (1981)

    Article  Google Scholar 

  10. T.J. Mueller: On the historical development of apparatus and techniques for smoke visualization of subsonic and supersonic flow, AIAA Paper 80-0420-CP (1980)

    Google Scholar 

  11. J.P. Prenel, Y. Bailly: Theoretical determination of light distributions in various laser light sheets for flow visualization, J. Flow Visual. Image Process. 5, 211–224 (1998)

    Google Scholar 

  12. F. Peters, A. Grassmann, H.S. chimmel, B. Kley: Improving small laser light sheets by means of a diffractive optical element, Exp. Fluids 35, 4–7 (2003)

    Article  Google Scholar 

  13. J.P. Prenel, Y. Bailly: Quantitative imagery of 3-D flows: From tomographic to volumic investigations, J. Flow Visual. Image Process. 8, 189–202 (2001)

    Google Scholar 

  14. J.S. Park, C.K. Choi, K.D. Kihm: Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM), Exp. Fluids 37, 105–119 (2004)

    Google Scholar 

  15. L. Hesselink: Digital image processing in flow visualization, Annu. Rev. Fluid Mech. 20, 421–485 (1988)

    Article  Google Scholar 

  16. M. Stöhr, K. Roth, B. Jähne: Measurement of 3D pore-scale flow in index-matched porous media, Exp. Fluids 35, 159–166 (2003)

    Article  Google Scholar 

  17. D.A. Walker: A fluorescence technique of measurements of concentration in mixing liquids, J. Phys, E Sci. Instrum. 20, 217–224 (1987)

    Article  Google Scholar 

  18. G. Kychakoff, R.D. Howe, R.K. Hanson: Quantitative flow visualization technique for measurements in combustion gases, Appl. Opt. 23, 704–712 (1984)

    Article  Google Scholar 

  19. I. Grant, X. Wang: Directionally-unambiguous, digital particle image velocimetry studies using a image intensifier camera, Exp. Fluids 18, 358–362 (1995)

    Article  Google Scholar 

  20. M.D. Shattuck, R.P. Behringer, G.A. Johnson, J.G. Georgiadis: Convection and flow in porous media, J. Fluid Mech. 332, 215–245 (1997)

    Google Scholar 

  21. D. Dabiri, M. Gharib: Simultaneous free-surface deformation and near-surface velocity measurements, Exp. Fluids 30, 381–390 (2001)

    Article  Google Scholar 

  22. S.L. Rani, M.S. Wooldridge: Quantitative flow visualization using the hydraulic analogy, Exp. Fluids 28, 165–169 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Merzkirch Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Merzkirch, W. (2007). Flow Visualization. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics