Skip to main content

Three-Dimensional Nanostructure Fabrication by Focused Ion Beam Chemical Vapor Deposition

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter, we describe three-dimensional nanostructure fabrication using 30 keV Ga+ focused ion beam chemical vapor deposition (FIB-CVD) and a phenanthrene (C14H10) source as a precursor. We also consider microstructure plastic art, which is a new field that has been made possible by microbeam technology, and we present examples of such art, including a “micro wine glass” with an external diameter of 2.75 μm and a height of 12 μm. The film deposited during such processes is diamond-like amorphous carbon, which has a Young's modulus exceeding 600 GPa, appearing to make it highly desirable for various applications. The production of three-dimensional nanostructures is also discussed. The fabrication of microcoils, nanoelectrostatic actuators, and 0.1 μm nanowiring – all potential components of nanomechanical systems – is explained. The chapter ends by describing the realization of nanoinjectors and nanomanipulators, novel nanotools for manipulating and analyzing subcellular organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

CVD:

chemical vapor deposition

DC:

direct current

DLC:

diamond like carbon

FIB:

focused ion beam

PC:

polycarbonate

SEM:

scanning electron microscopy

TEM:

transmission electron microscopy

References

  1. S. Matsui: Proc. IEEE 85, 629 (1997)

    Article  CAS  Google Scholar 

  2. O. Lehmann, F. Foulon, M. Stuke: NATO ASI Series E, Appl. Sci. 265, 91–102 (1994)

    CAS  Google Scholar 

  3. H. W. Koops: Jpn. J. Appl. Phys. 33, 7099 (1994)

    Article  CAS  Google Scholar 

  4. A. Wargner, J. P. Levin, J. L. Mauer, P. G. Blauner, S. J. Kirch, P. Long: J. Vacuum. Sci. Technol. B8, 1557 (1990)

    Google Scholar 

  5. I. Utke, P. Hoffmann, B. Dwir, K. Leifer, E. Kapon, P. Doppelt: J. Vacuum. Sci. Technol. B18, 3168 (2000)

    Google Scholar 

  6. A. J. DeMarco, J. Melngailis: J. Vacuum. Sci. Technol. B17, 3154 (1999)

    Google Scholar 

  7. S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, Y. Haruyama: J. Vacuum. Sci. Technol. B18, 3181 (2000)

    Google Scholar 

  8. T. Hoshino, K. Watanabe, R. Kometani, T. Morita, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: J. Vacuum. Sci. Technol. 21, 2732 (2003)

    Article  CAS  Google Scholar 

  9. E. Buks, M. L. Roukes: Phys. Rev. B 63, 033402 (2001)

    Article  Google Scholar 

  10. J. Fujita, M. Ishida, T. Sakamoto, Y. Ochiai, T. Kaito, S. Matsui: J. Vacuum. Sci. Technol. B 19, 2834 (2001)

    Google Scholar 

  11. M. Ishida, J. Fujita, Y. Ochiai: J. Vacuum. Sci. Technol. B20, 2784 (2002)

    Google Scholar 

  12. T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ichihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: J. Vacuum. Sci. Technol. B21, 2737 (2003)

    Google Scholar 

  13. J. Fujita, M. Ishida, Y. Ochiai, T. Ichihashi, T. Kaito, S. Matsui: J. Vacuum. Sci. Technol. 20, 2686 (2002)

    Article  CAS  Google Scholar 

  14. T. Morita, K. Nakamatsu, K. Kanda, Y. Haruyama, K. Kondo, T. Hoshino, T. Kaito, J. Fujita, T. Ichihashi, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: J. Vacuum. Sci. Technol. B22, 3137 (2004)

    Google Scholar 

  15. R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: J. Appl. Phys. 43(10), 7187 (2004)

    Article  CAS  Google Scholar 

  16. P. Vukusic, J. Roy. Sambles: Nature 424, 852 (2003)

    Article  CAS  Google Scholar 

  17. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, S. Matsui: Jpn. J. Appl. Phys. 44, L48 (2005)

    Article  CAS  Google Scholar 

  18. R. Kometani, T. Morita, K. Watanabe, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Jpn. J. Appl. Phys. 42, 4107 (2003)

    Article  CAS  Google Scholar 

  19. R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: J. Vacuum. Sci. Technol. B23, 298 (2005)

    Google Scholar 

  20. S. Akita, Y. Nakayama, S. Mizooka, Y. Takano, T. Okawa, K. Y. Miyatake, S. Yamanaka, M. Tsuji, T. Nosaka: Appl. Phys. Lett. 74, 1691 (2001)

    Article  Google Scholar 

  21. R. Kometani, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Nuclear Instrum. Meth. Phys. Res. B (2006) in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Matsui Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Matsui, S. (2007). Three-Dimensional Nanostructure Fabrication by Focused Ion Beam Chemical Vapor Deposition. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29857-1_6

Download citation

Publish with us

Policies and ethics