Skip to main content

Physiological Responses of the Newborn, Infant, and Child to Neurosurgical Trauma

  • Reference work entry
  • First Online:
Textbook of Pediatric Neurosurgery

Abstract

Children and adults are very different in anatomy and physiology. These differences are of critical importance in dealing with how they respond to central nervous system injury. Clinicians who are tasked with managing children need to understand the changing physiological profiles with age and how their pathophysiology differs as a consequence. This is important not only for the proper assessment and management of patients who present to us with neurotrauma but also for the patients in whom we inflict trauma by neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelson PD, Srinivas R, Chang Y, Bell M, Kochanek PM (2011) Cerebrovascular response in children following severe traumatic brain injury. Childs Nerv Syst 27(9):1465–1476

    PubMed  Google Scholar 

  • Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, Smielewski P (2012) Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med 40(8):2456–2463

    PubMed  Google Scholar 

  • Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 12(6):723–725

    CAS  PubMed  Google Scholar 

  • Avery RA (2014a) Interpretation of lumbar puncture opening pressure measurements in children. J Neuroophthalmol 34(3):284–287

    PubMed  PubMed Central  Google Scholar 

  • Avery RA (2014b) Reference range of cerebrospinal fluid opening pressure in children: historical overview and current data. Neuropediatrics 45(4):206–211

    PubMed  PubMed Central  Google Scholar 

  • Avery RA, Shah SS, Licht DJ, Seiden JA, Huh JW, Boswinkel J, Ruppe MD, Chew A, Mistry RD, Liu GT (2010) Reference range for cerebrospinal fluid opening pressure in children. N Engl J Med 363(9):891–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avery RA, Licht DJ, Shah SS, Huh JW, Seiden JA, Boswinkel J, Ruppe MD, Mistry RD, Liu GT (2011) CSF opening pressure in children with optic nerve head edema. Neurology 76(19):1658–1661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce DA, Raphaely RC, Goldberg AI, Zimmerman RA, Bilaniuk LT, Schut L, Kuhl DE (1979) Pathophysiology, treatment and outcome following severe head injury in children. Childs Brain 5(3):174–191

    CAS  PubMed  Google Scholar 

  • Cartwright C, Igbaseimokumo U (2015) Lumbar puncture opening pressure is not a reliable measure of intracranial pressure in children. J Child Neurol 30(2):170–173

    PubMed  Google Scholar 

  • Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T (2012) A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 367(26):2471–2481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chesnut RM, Bleck TP, Citerio G, Classen J, Cooper DJ, Coplin WM, Diringer MN, Grande PO, Hemphill JC 3rd, Hutchinson PJ, Le Roux P, Mayer SA, Menon DK, Myburgh JA, Okonkwo DO, Robertson CS, Sahuquillo J, Stocchetti N, Sung G, Temkin N, Vespa PM, Videtta W, Yonas H (2015) A consensus-based interpretation of the benchmark evidence from south american trials: treatment of intracranial pressure trial. J Neurotrauma 32(22):1722–1724

    PubMed  Google Scholar 

  • Chiron C, Raynaud C, Maziere B, Zilbovicius M, Laflamme L, Masure MC, Dulac O, Bourguignon M, Syrota A (1992) Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med 33(5):696–703

    CAS  PubMed  Google Scholar 

  • Cunningham AS, Salvador R, Coles JP, Chatfield DA, Bradley PG, Johnston AJ, Steiner LA, Fryer TD, Aigbirhio FI, Smielewski P, Williams GB, Carpenter TA, Gillard JH, Pickard JD, Menon DK (2005) Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain 128(Pt 8):1931–1942

    CAS  PubMed  Google Scholar 

  • Dixon RR, Nocera M, Zolotor AJ, Keenan HT (2016) Intracranial pressure monitoring in infants and young children with traumatic brain injury. Pediatr Crit Care Med 17(11):1064–1072

    PubMed  PubMed Central  Google Scholar 

  • Figaji AA (2010) Practical aspects of bedside cerebral hemodynamics monitoring in pediatric TBI. Childs Nerv Syst 26(4):431–439

    PubMed  Google Scholar 

  • Figaji AA, Kent SJ (2010) Brain tissue oxygenation in children diagnosed with brain death. Neurocrit Care 12(1):56–61

    CAS  PubMed  Google Scholar 

  • Figaji AA, Fieggen AG, Argent AC, Leroux PD, Peter JC (2008) Does adherence to treatment targets in children with severe traumatic brain injury avoid brain hypoxia? A brain tissue oxygenation study. Neurosurgery 63(1):83–91; discussion 91–92

    PubMed  Google Scholar 

  • Figaji AA, Zwane E, Fieggen AG, Argent AC, Le Roux PD, Siesjo P, Peter JC (2009a) Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury. J Neurosurg Pediatr 4(5):420–428

    PubMed  Google Scholar 

  • Figaji AA, Zwane E, Fieggen AG, Siesjo P, Peter JC (2009b) Transcranial doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol 72(4):389–394

    PubMed  Google Scholar 

  • Figaji AA, Zwane E, Thompson C, Fieggen AG, Argent AC, Le Roux PD, Peter JC (2009c) Brain tissue oxygen tension monitoring in pediatric severe traumatic brain injury: part 1: relationship with outcome. Childs Nerv Syst 25(10):1325–1333

    PubMed  Google Scholar 

  • Figaji AA, Zwane E, Thompson C, Fieggen AG, Argent AC, Le Roux PD, Peter JC (2009d) Brain tissue oxygen tension monitoring in pediatric severe traumatic brain injury: part 2: relationship with clinical, physiological, and treatment factors. Childs Nerv Syst 25(10):1335–1343

    PubMed  Google Scholar 

  • Figaji AA, Zwane E, Graham Fieggen A, Argent AC, Le Roux PD, Peter JC (2010a) The effect of increased inspired fraction of oxygen on brain tissue oxygen tension in children with severe traumatic brain injury. Neurocrit Care 12(3):430–437

    PubMed  Google Scholar 

  • Figaji AA, Zwane E, Kogels M, Fieggen AG, Argent AC, Le Roux PD, Peter JC (2010b) The effect of blood transfusion on brain oxygenation in children with severe traumatic brain injury. Pediatr Crit Care Med 11(3):325–331

    PubMed  Google Scholar 

  • Fog M (1938) The relationship between the blood pressure and the tonic regulation of the pial arteries. J Neurol Psychiatry 1(3):187–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gandy S, Ikonomovic MD, Mitsis E, Elder G, Ahlers ST, Barth J, Stone JR, DeKosky ST (2014) Chronic traumatic encephalopathy: clinical-biomarker correlations and current concepts in pathogenesis. Mol Neurodegener 9:37, 1326-9-37

    PubMed  PubMed Central  Google Scholar 

  • Gardner RC, Yaffe K (2015) Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci 66(Pt B):75–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giza CC, Prins ML (2006) Is being plastic fantastic? Mechanisms of altered plasticity after developmental traumatic brain injury. Dev Neurosci 28(4–5):364–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haque IU, Zaritsky AL (2007) Analysis of the evidence for the lower limit of systolic and mean arterial pressure in children. Pediatr Crit Care Med 8(2):138–144

    PubMed  Google Scholar 

  • Hartings J, Strong AJ, Fabricius M, Manning A, Bhatia R, Dreier J, Mazzeo AT, Tortella FC, Bullock R (2009) Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma 26(11):1857–1866

    PubMed  PubMed Central  Google Scholar 

  • Kehrer M, Schoning M (2009) A longitudinal study of cerebral blood flow over the first 30 months. Pediatr Res 66(5):560–564

    PubMed  Google Scholar 

  • Kiening KL, Unterberg AW, Bardt TF, Schneider GH, Lanksch WR (1996) Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg 85(5):751–757

    CAS  PubMed  Google Scholar 

  • Kochanek PM, Carney N, Adelson PD, Ashwal S, Bell MJ, Bratton S, Carson S, Chesnut RM, Ghajar J, Goldstein B, Grant GA, Kissoon N, Peterson K, Selden NR, Tasker RC, Tong KA, Vavilala MS, Wainwright MS, Warden CR, American Academy of Pediatrics-Section on Neurological Surgery, American Association of Neurological Surgeons/Congress of Neurological Surgeons, Child Neurology Society, European Society of Pediatric and Neonatal Intensive Care, Neurocritical Care Society, Pediatric Neurocritical Care Research Group, Society of Critical Care Medicine, Paediatric Intensive Care Society UK, Society for Neuroscience in Anesthesiology and Critical Care, World Federation of Pediatric Intensive and Critical Care Societies (2012) Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents – second edition. Pediatr Crit Care Med 13(Suppl 1):S1–82

    PubMed  Google Scholar 

  • Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr (1978) Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Phys 234(4):H371–H383

    CAS  Google Scholar 

  • Kouvarellis AJ, Rohlwink UK, Sood V, Van Breda D, Gowen MJ, Figaji AA (2011) The relationship between basal cisterns on CT and time-linked intracranial pressure in paediatric head injury. Childs Nerv Syst 27(7):1139–1144

    PubMed  Google Scholar 

  • Lacroix J, Hebert PC, Hutchison JS, Hume HA, Tucci M, Ducruet T, Gauvin F, Collet JP, Toledano BJ, Robillard P, Joffe A, Biarent D, Meert K, Peters MJ, TRIPICU Investigators, Canadian Critical Care Trials Group, Pediatric Acute Lung Injury and Sepsis Investigators Network (2007) Transfusion strategies for patients in pediatric intensive care units. N Engl J Med 356(16):1609–1619

    CAS  PubMed  Google Scholar 

  • Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39(2):183–238

    CAS  PubMed  Google Scholar 

  • Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Boesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O'Phelan K, Provencio JJ, Puppo C, Riker R, Robertson C, Schmidt M, Taccone F (2014) Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: a statement for healthcare professionals from the neurocritical care society and the european society of intensive care medicine. Neurocrit Care 21(Suppl 2):S1–26

    PubMed  Google Scholar 

  • Lin KL, Chen KS, Hsieh MY, Wang HS (2007) Transcranial color doppler sonography on healthy pre-school children: flow velocities and total cerebral blood flow volume. Brain Dev 29(2):64–68

    PubMed  Google Scholar 

  • Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl 36(149):1–193

    CAS  PubMed  Google Scholar 

  • Maa T, Yeates KO, Moore-Clingenpeel M, O'Brien NF (2016) Age-related carbon dioxide reactivity in children after moderate and severe traumatic brain injury. J Neurosurg Pediatr 18(1):73–78

    PubMed  Google Scholar 

  • Mandera M, Larysz D, Wojtacha M (2002) Changes in cerebral hemodynamics assessed by transcranial doppler ultrasonography in children after head injury. Childs Nerv Syst 18(3–4):124–128

    PubMed  Google Scholar 

  • Marshall RS (2004) The functional relevance of cerebral hemodynamics: why blood flow matters to the injured and recovering brain. Curr Opin Neurol 17(6):705–709

    PubMed  Google Scholar 

  • Moses P, Hernandez LM, Orient E (2014) Age-related differences in cerebral blood flow underlie the BOLD fMRI signal in childhood. Front Psychol 16(5):300

    Google Scholar 

  • Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, Gruemer H, Young HF (1991) Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 75(5):731–739

    CAS  PubMed  Google Scholar 

  • Nafiu OO, Voepel-Lewis T, Morris M, Chimbira WT, Malviya S, Reynolds PI, Tremper KK (2009) How do pediatric anesthesiologists define intraoperative hypotension? Paediatr Anaesth 19(11):1048–1053

    PubMed  Google Scholar 

  • Nagel C, Diedler J, Gerbig I, Heimberg E, Schuhmann MU, Hockel K (2016) State of cerebrovascular autoregulation correlates with outcome in severe infant/pediatric traumatic brain injury. Acta Neurochir Suppl 122:239–244

    PubMed  Google Scholar 

  • Nordstrom CH (2003) Assessment of critical thresholds for cerebral perfusion pressure by performing bedside monitoring of cerebral energy metabolism. Neurosurg Focus 15(6):E5

    PubMed  Google Scholar 

  • Nordstrom CH (2010) Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst 26(4):465–472

    PubMed  Google Scholar 

  • Oertel M, Kelly DF, Lee JH, McArthur DL, Glenn TC, Vespa P, Boscardin WJ, Hovda DA, Martin NA (2002) Efficacy of hyperventilation, blood pressure elevation, and metabolic suppression therapy in controlling intracranial pressure after head injury. J Neurosurg 97(5):1045–1053

    PubMed  Google Scholar 

  • Quincke H (1891) Ueber hydrocephalus. Verh congresses. Inn Med 10:321–340

    Google Scholar 

  • Robertson CS, Valadka AB, Hannay HJ, Contant CF, Gopinath SP, Cormio M, Uzura M, Grossman RG (1999) Prevention of secondary ischemic insults after severe head injury. Crit Care Med 27(10):2086–2095

    CAS  PubMed  Google Scholar 

  • Rohlwink UK, Figaji AA (2010) Methods of monitoring brain oxygenation. Childs Nerv Syst 26(4):453–464

    PubMed  Google Scholar 

  • Rohlwink UK, Zwane E, Fieggen AG, Argent AC, le Roux PD, Figaji AA (2012) The relationship between intracranial pressure and brain oxygenation in children with severe traumatic brain injury. Neurosurgery 70(5):1220–1230

    PubMed  Google Scholar 

  • Rosenthal G, Sanchez-Mejia RO, Phan N, Hemphill JC, Martin C, Manley GT (2011) Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg 114(1):62–70

    PubMed  Google Scholar 

  • Rosner MJ, Rosner SD, Johnson AH (1995) Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg 83(6):949–962

    CAS  PubMed  Google Scholar 

  • Sakas DE, Bullock MR, Patterson J, Hadley D, Wyper DJ, Teasdale GM (1995) Focal cerebral hyperemia after focal head injury in humans: a benign phenomenon? J Neurosurg 83(2):277–284

    CAS  PubMed  Google Scholar 

  • Schoning M, Hartig B (1996) Age dependence of total cerebral blood flow volume from childhood to adulthood. J Cereb Blood Flow Metab 16(5):827–833

    CAS  PubMed  Google Scholar 

  • Sharples PM, Stuart AG, Matthews DS, Aynsley-Green A, Eyre JA (1995) Cerebral blood flow and metabolism in children with severe head injury. Part 1: relation to age, glasgow coma score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry 58(2):145–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siesjo BK (1992) Pathophysiology and treatment of focal cerebral ischemia. Part I: pathophysiology. J Neurosurg 77(2):169–184

    CAS  PubMed  Google Scholar 

  • Sinner B, Becke K, Engelhard K (2014) General anaesthetics and the developing brain: an overview. Anaesthesia 69(9):1009–1022

    CAS  PubMed  Google Scholar 

  • Takahashi T, Shirane R, Sato S, Yoshimoto T (1999) Developmental changes of cerebral blood flow and oxygen metabolism in children. AJNR Am J Neuroradiol 20(5):917–922

    CAS  PubMed  Google Scholar 

  • Tolias C, Richards D, Bowery N, Sgouros S (2002a) Investigation of extracellular amino acid release in children with severe head injury using microdialysis. A pilot study. Acta Neurochir Suppl 81:377–379

    CAS  PubMed  Google Scholar 

  • Tolias CM, Richards DA, Bowery NG, Sgouros S (2002b) Extracellular glutamate in the brains of children with severe head injuries: a pilot microdialysis study. Childs Nerv Syst 18(8):368–374

    PubMed  Google Scholar 

  • Udomphorn Y, Armstead WM, Vavilala MS (2008) Cerebral blood flow and autoregulation after pediatric traumatic brain injury. Pediatr Neurol 38(4):225–234

    PubMed  PubMed Central  Google Scholar 

  • Vavilala MS, Lee LA, Boddu K, Visco E, Newell DW, Zimmerman JJ, Lam AM (2004) Cerebral autoregulation in pediatric traumatic brain injury. Pediatr Crit Care Med 5(3):257–263

    PubMed  Google Scholar 

  • Vespa P, Bergsneider M, Hattori N, HM W, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25(6):763–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vespa P, Boonyaputthikul R, McArthur DL, Miller C, Etchepare M, Bergsneider M, Glenn T, Martin N, Hovda D (2006) Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med 34(3):850–856

    CAS  PubMed  Google Scholar 

  • Wintermark M, Lepori D, Cotting J, Roulet E, van Melle G, Meuli R, Maeder P, Regli L, Verdun FR, Deonna T, Schnyder P, Gudinchet F (2004) Brain perfusion in children: evolution with age assessed by quantitative perfusion computed tomography. Pediatrics 113(6):1642–1652

    PubMed  Google Scholar 

  • Wu C, Honarmand AR, Schnell S, Kuhn R, Schoeneman SE, Ansari SA, Carr J, Markl M, Shaibani A (2016) Age-related changes of normal cerebral and cardiac blood flow in children and adults aged 7 months to 61 years. J Am Heart Assoc 5(1). doi:10.1161/JAHA.115.002657

    Google Scholar 

  • Zwienenberg M, Muizelaar JP (1999) Severe pediatric head injury: the role of hyperemia revisited. J Neurotrauma 16(10):937–943

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Figaji .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Figaji, A. (2020). Physiological Responses of the Newborn, Infant, and Child to Neurosurgical Trauma. In: Di Rocco, C., Pang, D., Rutka, J. (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-72168-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72168-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72167-5

  • Online ISBN: 978-3-319-72168-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics