Skip to main content

Neuroimaging in Pediatric Hydrocephalus

  • Reference work entry
  • First Online:
Textbook of Pediatric Neurosurgery
  • 206 Accesses

Abstract

Hydrocephalus may be defined as an expansion of the CSF compartment of the head at the expense of the brain. Common in children, it is classically recognized from the triad of a macrocephaly, a ventriculomegaly with effacement of the pericerebral spaces, and typically, a cause. It may be obstructive, and the obstruction may sit either along the ventricular pathways or in the cisterns; it may be nonobstructive, when no obstruction can be demonstrated. In obstructive hydrocephalus, the main pathogenetic factor is the loss of compliance, that is, the loss of the ability of the system to buffer the force of the systolic pressure wave. In nonobstructive hydrocephalus, the main pathogenetic factor seems to be a secretion-absorption mismatch. Depending on the clinical course, hydrocephalus may be acute, progressively acute, or chronic.

CSF is secreted by the choroid plexuses and absorbed passively by the dural absorption sites; simultaneously, water can be actively transported by AQP4 channels in and out the parenchyma across the ependymal and subpial surfaces, as well as to the capillaries. Because of the systolic inflow of blood into the skull cavity at each cardiac stroke, the CSF is submitted to oscillatory movements, the force of which need to be buffered not to do injury to the parenchyma. Based on this, hydrocephalus can be considered the single mechanical consequence of multiple processes which may affect secretion, absorption, transport, and movements of the CSF, because of either a loss of compliance, or of a secretion-absorption mismatch, or both. Mechanically it affects the brain by compressing the vascular bed, which results in parenchymal ischemic changes. The CSF-parenchyma molecular exchanges also may be affected by the CSF flow alterations and by the deleterious effect of hydrocephalus on the ependyma and the subependymal progenitor zone.

Hydrocephalus must be evaluated, and as much as possible, followed by using MR imaging (ultrasonography however is precious in infants). Beyond the classic triad of macrocephaly, ventriculomegaly, and a cause, imaging of hydrocephalus should investigate the associated brain lesions possibly due to hydrocephalus itself, or to its causal pathology. This implies that hydrocephalus constitutes different diseases in the fetus, the neonate, the children, and the adolescents, because the causal diseases, the brain injury related to them, and the response of the parenchyma are all age-dependent. Postoperatively, imaging aims at assessing the mechanical efficacy of the CSF diversion, as well as at identifying early and late complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • ACR (2015) ACR-SPR Practice Parameter for the safe and optimal performance of fetal magnetic resonance imaging (MRI). www.acr.org

  • Agre P, Preston GM, Smith BL et al (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Phys 34:F463–F476

    Google Scholar 

  • Akbik F, Cafferty WB, Strittmatter SM (2012) Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp Neurol 235:43–52

    CAS  PubMed  Google Scholar 

  • Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17

    CAS  PubMed  Google Scholar 

  • Alperin NJ, Lee SH, Loth F et al (2000) MR-intracranial pressure (ICP): a method to measure intracranial elastance and pressure non-invasively by means of MR imaging. Baboon and human study. Radiology 217:877–885

    CAS  PubMed  Google Scholar 

  • Andresen M, Juhler M (2012) Multiloculated hydrocephalus: a review of current problems in classification and treatment. Childs Nerv Syst 28:357–362

    PubMed  Google Scholar 

  • Anei R, Hanashi Y, Hiroshima S et al (2011) Hydrocephalus due to diffuse villous hyperplasia of the choroid plexus. Neurol Med Chir (Tokyo) 51:437–441

    Google Scholar 

  • Arichi T, Counsell SJ, Allievi AG et al (2014) The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy. Neuroradiology 56:985–994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artru AA (1999) Spinal cerebrospinal fluid chemistry and physiology. In: Yaksh TL (ed) Spinal drug delivery. Elsevier, Amsterdam, pp 177–238

    Google Scholar 

  • Assaf Y, Ben-Sira L, Constantini S et al (2006) Diffusion tensor imaging in hydrocephalus: initial experience. AJNR Am J Neuroradiol 27:1717–1724

    CAS  PubMed  Google Scholar 

  • Aziz AA, Coleman L, Morokoff A, Maixner W (2005) Diffuse choroid plexus hyperplasia: an under-diagnosed cause of hydrocephalus in children? Pediatr Radiol 35:815–818

    PubMed  Google Scholar 

  • Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology and pathophysiology. J Cereb Blood Flow Metab 22:367–378

    CAS  PubMed  Google Scholar 

  • Banizs B, Pike MM, Millican CL et al (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and results in the formation of hydrocephalus. Devel Dis 132:5329–5339

    CAS  Google Scholar 

  • Barkovich AJ, Newton TH (1989) Aqueductal stenosis: evidence of a broad spectrum of tectal distorsion. Am J Neuroradiol 10:471–475

    CAS  PubMed  Google Scholar 

  • Bateman GA, Smith RL, Siddique SH (2007). Idiopathic hydrocephalus in children and idiopathic intracranial hypertension in adults: two manifestations of the same physiopathological process? J Neurosurg (6 Suppl Pediatrics) 107:439–444

    Google Scholar 

  • Benarroch EE (2011) Circumventricular organs. Receptive and homeostatic functions and clinical implications. Neurology 77:1198–1204

    PubMed  Google Scholar 

  • Beni-Adani L, Biani N, Ben-Sirah L, Constantini S (2006) The occurrence of obstructive vs absorptive hydrocephalus in newborns and infants: relevance to treatment choices. Childs Nerv Syst 22:1543–1563

    PubMed  Google Scholar 

  • Bergsneider M, Egnor MR, Johnston M et al. (2006) What we don’t (but should) know about hydrocephalus. J Neurosurg (3 Suppl Pediatrics) 104:157–159

    Google Scholar 

  • Bering EA (1952) Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg 9:275–287

    PubMed  Google Scholar 

  • Bering EA (1954) Water exchange in the brain and cerebrospinal fluid. J Neurosurg 11:234–242

    CAS  PubMed  Google Scholar 

  • Bering EA (1955) Choroid plexus and arterial pulsation of cerebrospinal fluid. Demonstration of the choroid plexuses as a cerebrospinal fluid pump. AMA Arch Neurol Psychiatry 73:165–172

    PubMed  Google Scholar 

  • Bering EA (1962) Circulation of the cerebrospinal fluid. Demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg 19:405–413

    PubMed  Google Scholar 

  • Bering EA, Sato O (1963) Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063

    PubMed  Google Scholar 

  • Bickers DS, Adams RD (1949) Hereditary stenosis of the aqueduct of Sylvius as a cause of congenital hydrocephalus. Brain 72:246–262

    CAS  PubMed  Google Scholar 

  • Blake JA (1900) The roof and lateral recesses of the fourth ventricle, considered morphologically and embryologically. J Comp Neurol 10:79–108

    Google Scholar 

  • Bondy C, Chin E, Smith BL et al (1993) Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci U S A 90:4500–4504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard S, Davey MG, Rintoul NE et al (2003) Correction of hindbrain herniation and anatomy of the vermis after in utero repair of myelomeningocele in sheep. J Pediatr Surg 38:451–458

    PubMed  Google Scholar 

  • Bourgeois M, Sainte-Rose C, Cinalli G et al (1999) Epilepsy in children with shunted hydrocephalus. J Neurosurg 90:274–281

    CAS  PubMed  Google Scholar 

  • Bouyssi-Kobar M, du Plessis AJ, Robertson RL, Limperopoulos C (2015) Fetal magnetic resonance imaging: exposure time and functional outcome at preschool age. Pediatr Radiol 45:1823–1830

    PubMed  Google Scholar 

  • Bozanovic-Sosic R, Mollanji R, Johnston MG (2001) Spinal and cranial contribution to total cerebrospinal fluid transport. Am J Phys Regul Integr Comp Phys 281:R909–R916

    CAS  Google Scholar 

  • Bradley WG (2015) CSF flow in the brain in the context of normal pressure hydrocephalus. AJNR Am J Neuroradiol 36:831–838

    PubMed  Google Scholar 

  • Bradley WG, Kortman KE, Burgoyne B (1986) Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology:611–616

    Google Scholar 

  • Bradley WG, Whitemore AR, Kortman KE et al (1991) Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology 178:459–466

    PubMed  Google Scholar 

  • Braun KPJ, Gooskens RHJM, Vandertop WP et al (2003) 1H magnetic resonance spectroscopy in human hydrocephalus. J Magn Reson Imaging 17:291–299

    PubMed  Google Scholar 

  • Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10

    PubMed  PubMed Central  Google Scholar 

  • Britz GW, Kim DK, Loeser JD (1996) Hydrocephalus secondary to diffuse villous hyperplasia of the choroid plexus. J Neurosurg 85:689–691

    CAS  PubMed  Google Scholar 

  • Brocklehurst G (1969) The development of the cerebrospinal fluid pathway with particular reference to the roof of the fourth ventricle. J Anat 105:467–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brodbelt A, Stoodley M (2007) CSF pathways: a review. Brit J Neurosurg 21:510–520

    CAS  Google Scholar 

  • Bruce DA, Weprin B (2001) The slit ventricle syndrome. Neurosurg Clin N Am 36:709–717

    Google Scholar 

  • Bulat M, Klarica M (2011) Recent insights into a new hydrodynamics of the cerebrospinal fluid. Review Brain Res Rev 65:99–112

    PubMed  Google Scholar 

  • Bulat M, Lupret V, Orešković D, Klarica M (2008) Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Anthropol 32(Suppl 1):43–50

    Google Scholar 

  • Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122

    CAS  PubMed  Google Scholar 

  • Cagneaux M, Vasiljevic A, Massoud M et al (2013) Severe second-trimester obstructive ventriculomegaly related to disorders of diencephalic, mesencephalic and rhombencephalic differentiation. Ultrasound Obstet Gynecol 42:596–602

    CAS  PubMed  Google Scholar 

  • Caldarelli M, Novegno F, Di Rocco C (2009) A late complication of CSF shunting: an acquired Chiari 1 malformation. Childs Nerv Syst 25:443–452

    PubMed  Google Scholar 

  • Cardoso ER, Rowan JO, Galbraith S (1983) Analysis of the cerebrospinal pulse wave in intracranial pressure. J Neurosurg 59:817–821

    CAS  PubMed  Google Scholar 

  • Carrera E, Kim DJ, Castellani G et al (2010) What shapes pulse amplitude of intracranial pressure? J Neurotrauma 27:317–324

    PubMed  Google Scholar 

  • Castañeyra-Perdomo A, Meyer G, Carmona-Calero E et al (1994) Alterations of the subcommissural organ in the human fetal brain. Devel Brain Res 79:316–320

    Google Scholar 

  • Catala M (2007) Carbonic anhydrase activity during development of the choroid plexus in the human fetus. Childs Nerv Syst 13:364–368

    Google Scholar 

  • Cataltelpe O, Liptzin D, Jolley L, Smith TW (2010) Diffuse villous hyperplasia of the choroid plexus and its surgical management. J Neurosurg Pediatrics 5:518–522

    Google Scholar 

  • Cavalheiro S, Moron AF, Zymberg ST, Dastoli P (2003) Fetal hydrocephalus – prenatal treatment. Childs Nerv Syst 19:561–573

    PubMed  Google Scholar 

  • Chang CC, Kuwana N, Ito S, Ikegami T (1999) Prediction of effectiveness of shunting in patients with normal pressure hydrocephalus by cerebral blood flow measurement and computed tomography cisternography. Neurol Med Chir (Tokyo) 39:845–846

    Google Scholar 

  • Chumas PD, Armstrong DC, Drake JM et al (1993) Tonsillar herniation: the rule rather than the exception after lumboperitoneal shunting in the pediatric population. J Neurosurg 78:568–573

    CAS  PubMed  Google Scholar 

  • Chumas P, Tyagi A, Livinston J (2001) Hydrocephalus – what’s new? Arch Dis Child Fetal Neonaal Ed 85:F149–F154

    CAS  Google Scholar 

  • Chi JH, Fullerton HJ, Gupta N (2005) Time trends and demographics of deaths from congenital hydrocephalus in children in the United States: National Center for Health Statistics data, 1979–1998. J Neurosurg (Pediatrics 2) 103:113–118

    Google Scholar 

  • Childe AE, McNaughton FL (1942) Diverticula of the lateral ventricles extending in the posterior fossa. Arch Neurol Psychiatr 47:768–778

    Google Scholar 

  • Choux M, Genitori L, Lang D et al (1992) Shunt implantation: reducing the incidence of shunt infection. J Neurosurg 77:875–880

    CAS  PubMed  Google Scholar 

  • Cinalli G, Sainte-Rose C, Lellouch-Tubiana A et al (1995) Hydrocephalus associated with intramedullary low-grade glioma. Illustrative case and review of the literature. J Neurosurg 83:480–485

    CAS  PubMed  Google Scholar 

  • Cinalli G, Sainte-Rose C, Kollar EM et al (1998) Hydrocephalus and craniosynostosis. J Neurosurg 88:209–214

    CAS  PubMed  Google Scholar 

  • Cinalli G, Spennato P, Savarese L et al (2006) Endoscopic aqueductoplasty and placement of a stent in the cerebral aqueduct in the management of isolated fourth ventricle in children. J Neurosurg 104(1 Suppl):21–27

    PubMed  Google Scholar 

  • Cinalli G, Spennato P, Alibert F, Cianciulli E (2010) Chapter 8: Aqueductal stenosis. In: Mallucci C, Sgouros S (eds) Cerebrospinal fluid disorders. Informa Healthcare, New York/London, pp 154–188

    Google Scholar 

  • Cinalli G, Spennato P, Nastro A et al (2011) Hydrocephalus in aqueductal stenosis. Childs Nerv Syst 27:1621–1642

    PubMed  Google Scholar 

  • Citrin CM, Sherman JL, Gangarosa RE, Scanlon D (1986) Physiology of the CSF flow void sign: modification by cardiac gating. AJNR Am J Neuroradiology:1021–1024

    Google Scholar 

  • Cserr HF, Harling-Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2:269–276

    CAS  PubMed  Google Scholar 

  • Cutler RWP, Page L, Galicich G, Watters GV (1968) Formation and absorption of cerebrospinal fluid in man. Brain 91:707–720

    CAS  PubMed  Google Scholar 

  • D’Addario V, Rossi AC (2012) Neuroimaging of ventriculomegaly in the fetal period. Semin Fet Neonat Med 17:310–318

    Google Scholar 

  • Dandy WE, Blackfan KD (1914) Internal hydrocephalus. An experimental, clinical and pathological study. Am J Dis Child 8:406–482

    Google Scholar 

  • De Wit OA, den Dunnen WFA, Sollie KM et al (2008) Pathogenesis of cerebral malformations in human fetuses with myelomeningocele. Cerebrospinal Fluid Res 24:563–575

    Google Scholar 

  • Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573–585

    PubMed  Google Scholar 

  • Del Bigio MR (2010) Ependymal cells: biology and pathology. Acta Neuropathol 119:55–73

    PubMed  Google Scholar 

  • Del Bigio MR (2011) Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain 134:1344–1361

    PubMed  Google Scholar 

  • Del Bigio MR, Zhang YW (1998) Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol 154:157–169

    PubMed  Google Scholar 

  • Del Bigio MR, Wilson MJ, Enno T (2003) Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 53:337–346

    PubMed  Google Scholar 

  • Demerens C, Stankoff B, Logak M et al (1996) Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci U S A 93:9887–9892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis M, Fitz CR, Netley CT et al (1981) The intelligence of hydrocephalic children. Arch Neurol 38:607–615

    CAS  PubMed  Google Scholar 

  • Desmond ME, Jacobson AG (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 57:188–198

    CAS  PubMed  Google Scholar 

  • Di Rocco C (1994) Is the slit ventricle always a slit ventricle syndrome? Childs Nerv Syst 10:49–58

    PubMed  Google Scholar 

  • Di Rocco C, Iannelli A (1997) Poor outcome of bilateral congenital choroid plexus papillomas with extreme hydrocephalus. Eur Neurol 37:33–37

    PubMed  Google Scholar 

  • Di Rocco C, Velardi F (2003) Acquired Chiari I malformation managed by supratentorial enlargement. Childs Nerv Syst 19:800–807

    PubMed  Google Scholar 

  • Di Rocco C, Maira G, Rossi G, Vignati A (1976) Cerebrospinal fluid pressure studies in normal pressure hydrocephalus and cerebral atrophy. Eur Neurol 14:119–128

    PubMed  Google Scholar 

  • Di Rocco C, Pettorossi VE, Caldarelli M et al (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol 59:40–52

    PubMed  Google Scholar 

  • Dinçer A, Kohan S, Özek MM (2009) Is all “communicating” hydrocephalus really communicating? Prospective study on the value of 3D-constructive interference in steady-state sequence at 3T. AJNR Am J Neuroradiol:301898–301906

    Google Scholar 

  • Ding Y, McAllister JP, Yao B et al (2001) Neuron tolerance during hydrocephalus. Neuroscience 106:659–667

    CAS  PubMed  Google Scholar 

  • Dominguez-Pinos MD, Páez P, Jiménez AJ et al (2005) Ependymal denudation and alterations of the subependymal zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol 64:595–604

    PubMed  Google Scholar 

  • Drake JM, Canadian Pediatric Neurosurgery Group (2007) Endoscopic third ventriculoscopy in pediatric patients: the Canadian experience. Neurosurgery 60:881–886

    PubMed  Google Scholar 

  • Drake JM, Kestle JRW, Tuli S (2000) CSF shunts 50 years on – past, present and future. Childs Nerv Syst 16:800–804

    CAS  PubMed  Google Scholar 

  • Dziegielewska KM, Ek J, Habgood MD, Saunders NR (2001) Development of the choroid plexus. Microsc Res Tech 52:5–20

    CAS  PubMed  Google Scholar 

  • Ehrlich S, McComb JG, Hyman S, Weiss MH (1989) Ultrastructure of the orbital pathway for cerebrospinal fluid drainage in rabbits. J Neurosurg 70:926–931

    Google Scholar 

  • Enzmann DR, Pelc NJ (1993) Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am J Neuroradiol 14:1301–1307

    CAS  PubMed  Google Scholar 

  • Epstein F, Hochwald GM, Ransohoff J (1973) Neonatal hydrocephalus treated by compressive head wrapping. Lancet 1:634

    CAS  PubMed  Google Scholar 

  • Epstein FJ, Fleisher AS, Hochwald GM, Ransohoff J (1974) Subtemporal craniectomy for recurrent shunt obstruction secondary to small ventricles. J Neurosurg 41:29–31

    CAS  PubMed  Google Scholar 

  • Erşahin Y (2007) Endoscopic aqueductoplasty. Childs Nerv Syst 23:143–150

    PubMed  Google Scholar 

  • Falhauer K, Smitz P (1978) Overdrainage phenomena in shunt treated hydrocephalus. Acta Neurochir (Wien) 45:89–101

    Google Scholar 

  • Fallah A, Wang AC, Weil AG et al (2016) Predictors of outcome following cerebral aqueductoplasty: an individual participant data meta-analysis. Neurosurgery 78:285–296

    PubMed  Google Scholar 

  • Ferland RJ, Batiz LF, Neal J et al (2009) Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18:497–516

    Google Scholar 

  • Fischbein NJ, Ciricillo SF, Barr RM et al (1998) Endoscopic third ventriculostomy: MR assessment of patency with 2D cine phase-contrast versus T2 weighted fast spin echo technique. Pediatr Neurosurg 28:70–78

    CAS  PubMed  Google Scholar 

  • Fletcher JM, McCauley SR, Brandt ME et al (1996) Regional brain tissue composition in children with hydrocephalus: relationships with cognitive development. Arch Neurol 53:549–557

    CAS  PubMed  Google Scholar 

  • Forghani R, Farb RI (2008) Diagnosis and temporal evolution of signs of intracranial hypotension on MRI of the brain. Neuroradiology 50:1025–1034

    CAS  PubMed  Google Scholar 

  • Fox RJ, Walji AH, Mielke B et al (1996) Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39:84–91

    CAS  PubMed  Google Scholar 

  • Fransen E, Schrander-Stumpel C, Vits L et al (1994) X-linked hydrocephalus and MASA syndrome present in one family are due to a single missense mutation in exon 28 of the L1CAM gene. Hum Mol Genet 3:2255–2256

    CAS  PubMed  Google Scholar 

  • Fujimoto Y, Matsushita H, Plese JP, Marino R (2004) Hydrocephalus due to diffuse villous hyperplasia of the choroid plexus. Pediatr Neurosurg 40:32–36

    PubMed  Google Scholar 

  • Fujimura M, Onuma T, Kameyama M et al (2004) Hydrocephalus due to cerebrospinal fluid hyperproduction by bilateral choroid plexus papillomas. Childs Nerv Syst 20:485–488

    PubMed  Google Scholar 

  • Futagi Y, Susuki Y, Toribe Y, Morimoto K (2002) Neurodevelopmental outcome in children with fetal hydrocephalus. Pediatr Neurol 27:111–116

    PubMed  Google Scholar 

  • Gabriel RS, McComb JG (1985) Malformations of the central nervous system. In: Menkes JH (ed) Textbook of child neurology. Lea and Fibiger, Philadelphia, pp 234–253

    Google Scholar 

  • Galarza M (2002) Evidence of the subcommissural organ in humans and its association with hydrocephalus. Neurosurg Rev 25:205–215

    PubMed  Google Scholar 

  • Garne E, Loane M, Addor MC et al (2010) Congenital hydrocephalus – prevalence, prenatal diagnosis and outcome of pregnancy in four European regions. Eur J Paediatr Neurol 14:150–155

    PubMed  Google Scholar 

  • Girard NJ, Raybaud CA (2001) Ventriculomegaly and pericerebral CSF collection in the fetus: early stage of benign external hydrocephalus? Childs Nerv Syst 17:239–245

    CAS  PubMed  Google Scholar 

  • Girard N, Gire C, Sigaudy S et al (2003) MR imaging of acquired fetal brain disorders. Childs Nerv Syst 19:490–500

    PubMed  Google Scholar 

  • Gömöri É, Pál J, Ábrahám H et al (2006) Fetal development of membrane water channel proteins aquaporin-1 and aquaporin-4 in the human brain. Int J Devel Neuroscience 24:295–305

    Google Scholar 

  • Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27:145–165

    PubMed  Google Scholar 

  • Greitz D, Franck A, Nordell B (1993) On the pulsatile nature of the intracranial and spinal CSF-circulation demonstrated by MR imaging. Acta Radiol 34:321–328

    CAS  PubMed  Google Scholar 

  • Griscom NT (1970) The contracting skull. Inward growth of the inner table as a physiologic response to diminution of intracranial content in children. Am Roentgenol Radium Ther Nucl Med 110:106–110

    Google Scholar 

  • Guerra MM, González C, Caprile T et al (2015) Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis. Frontiers Cell Neuroosci 9:480

    Google Scholar 

  • Guirao B, Meunier A, Mortaud S et al (2010) Coupling between hemodynamic forces and planar cell polarity orients mamalian motile cilia. Nat Cell Biol 12:341–350

    CAS  PubMed  Google Scholar 

  • Guzzetta A, D’Acunto G, Rose S et al (2010) Plasticity of the visual system after early brain damage. Dev Med Child Neurol 52:891–900

    PubMed  Google Scholar 

  • Hallaert GG, Vanhauwaert DJ, Logghe K et al (2012) Endoscopic coagulation of choroid plexus hyperplasia. J Neurosurg Pediatrics 9:169–177

    Google Scholar 

  • Hamilton R, Baldwin K, Fuller J et al (2012) Intracranial pressure waveform correlates with aqueductal cerebrospinal fluid stroke volume. J Appl Physiol 113:1560–1566

    PubMed  PubMed Central  Google Scholar 

  • Hirai O, Handa H, Ishikawa M (1984) Epidural pulse waveform as an indicator of intracranial pressure dynamics. Surg Neurol 21:67–74

    CAS  PubMed  Google Scholar 

  • Hirano H, Hirahara K, Asakura T et al (1994) Hydrocephalus due to villous hypertrophy of the choroid plexus in the lateral ventricles. J Neurosurg 80:321–323

    CAS  PubMed  Google Scholar 

  • Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through, and out of the brain: evaluation of the evidence. Fluids Barr CNS 11:26

    Google Scholar 

  • Hu X, Glenn T, Scalzo F et al (2010) Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow. Physiol Meas 31:679–695

    PubMed  PubMed Central  Google Scholar 

  • Hugare J, Rönning O (1995) Growth of the cranial vault: influence of intracranial and extracranial pressures. Acta Odontol Scand 53:192–195

    Google Scholar 

  • Huh MS, Todd MA, Picketts DJ (2009) SCO-ping out of the mechanisms underlying the etiology of hydrocephalus. Physiology 24:117–126

    CAS  PubMed  Google Scholar 

  • Illif JJ, Wang M, Zeppenfeld DM et al (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199

    Google Scholar 

  • Ipsikioglu AC, Bek S, Gökduman A et al (2006) Diffuse villous hyperplasia of choroid plexus. Acta Neurochir 148:691–694

    Google Scholar 

  • Ishak GE, Dempsey JC, Shaw DWW et al (2012) Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain 135:1370–1386

    PubMed  PubMed Central  Google Scholar 

  • Iskandar BJ, Sansone JM, Medow J, Rowley HA (2004) The use of quick-brain magnetic resonance imaging in the evaluation of shunt-treated hydrocephalus. J Neurosurg Pediatrics 101:147–151

    Google Scholar 

  • Jeng S, Gupta N, Wrensch M et al (2011) Prevalence of congenital hydrocephalus in California 1991–2000. Pediatr Neurol 45:67–71

    PubMed  Google Scholar 

  • Jimenez AJ, Dominguez-Pinos MD, Guerra MM et al (2014) Structure and function of the ependymal barrier and diseases associated with ependymal disruption. Tissue Barriers 2:228426

    Google Scholar 

  • Johanson CE, Duncan JA, Klinge P et al (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10

    PubMed  PubMed Central  Google Scholar 

  • Johansson PA (2014) The choroid plexuses and their impact on developmental neurogenesis. Front Neurosci 8:340

    PubMed  PubMed Central  Google Scholar 

  • Johansson PA, Dziegielewska KM, Ek CJ et al (2005) Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell Tissue Res 322:353–364

    CAS  PubMed  Google Scholar 

  • Johnston M, Zakharov A, Papaiconomou C et al (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2

    Google Scholar 

  • Johnston M, Armstrong D, Koh L (2007) Possible role of the cavernous sinus veins in cerebrospinal fluid absorption. Cerebrospinal Fluid Res 4:3

    PubMed  PubMed Central  Google Scholar 

  • Kao SCS, Waziri MH, Smith WL et al (1989) MR imaging of the craniovertebral junction, cranium, and brain in children with achondroplasia. Am J Roentgenol 153:69–75

    Google Scholar 

  • Kehrer M, Blumenstock G, Ehehalt S et al (2005) Development of the cerebral blood flow volume in preterm neonates during the first two weeks of life. Pediatr Res 58:927–930

    PubMed  Google Scholar 

  • Kendall B, Holland I (1981) Benign communicating hydrocephalus in children. Neuroradiology 21:93–96

    CAS  PubMed  Google Scholar 

  • Klarica M, Orešković D, Božić B et al (2009) New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience 158:1397–1405

    CAS  PubMed  Google Scholar 

  • Klosovskii BN (1963) The development of the brain and its disturbance by harmful factors. Pergamon Press, London

    Google Scholar 

  • Kostovic I, Judas M, Rados M, Hradac P (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12:536–544

    PubMed  Google Scholar 

  • Lam S, Harris D, Rocque BG, Ham SA (2014) Pediatric endoscopic third ventriculostomy: a population-based study. J Neurosurg Pediatrics 14:455–464

    Google Scholar 

  • Larsson A, Moonen M, Bergh AC et al (1990) Predictive value of quantitative cisternography in normal pressure hydrocephalus. Acta Neurol Scand 81:327–332

    CAS  PubMed  Google Scholar 

  • Laurence KM (1979) The biology of choroid plexus papilloma in infancy and childhood. Acta Neurochir 50:79–90

    CAS  PubMed  Google Scholar 

  • Laye MR, Moore BC, Bufkin LK et al (2009) Fetal macrocrania: diagnosis, delivery and outcomes. J Perinatol 29:201–204

    CAS  PubMed  Google Scholar 

  • Lee L (2013) Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res 91:1117–1132

    CAS  PubMed  Google Scholar 

  • Lee KS, Bae WK, Bae HG, Yun IG (2000) The fate of traumatic subdural hygroma in serial computed tomographic scans. J Korean Med Sci 15:560–568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leliefeld PH, Gooskens RHJM, Vincken KM et al (2008) Magnetic resonance imaging for quantitative flow measurements in infants with hydrocephalus: a prospective study. J Neurosurg Pediatrics 2:163–170

    Google Scholar 

  • Liliequist B (1959) The subarachnoid cisterns. An anatomic and roentgenologic study. Acta Radiol Suppl 185:1–108

    CAS  PubMed  Google Scholar 

  • Ling EA, Kaur C, Lu J (1998) Origin, nature, and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc Res Tech 41:43–56

    CAS  PubMed  Google Scholar 

  • Linninger AA, Tsakiris C, Zhu DC et al (2005) Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Trans Biomed Eng 52(4):557–565

    PubMed  Google Scholar 

  • Longatti P, Basaldella L, Orvieto E et al (2006) Aquaporin(s) expression in choroid plexus tumours. Pediatr Neurosurg 42:228–233

    PubMed  Google Scholar 

  • Longatti P, Fiorindi A, Perin A et al (2007) Endoscopic anatomy of the cerebral aqueduct. Neurosurgery 61(suppl 1):1–7

    PubMed  Google Scholar 

  • Luciano MG, Skarupa DJ, Booth AM et al (2001) Cerebrovascular adaptation in chronic hydrocephalus. J Cereb Blood Flow Metabol 21:285–294

    CAS  Google Scholar 

  • Lüdemann W, Berens von Rautenfeld D, Samii M, Brinker T (2005) Ultrastructure of the cerebrospinal fluid outflow along the optic nerve into the lymphatic system. Childs Nerv Syst 21:96–103

    PubMed  Google Scholar 

  • Lüders E, Steinmetz H, Jäcke L (2002) Brain size and grey matter volume in the healthy human brain. Neuroreport 13:2371–2374

    PubMed  Google Scholar 

  • Luetmer PH, Huston J, Friedman J et al (2002) Measurement of the cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery 50:534–543

    PubMed  Google Scholar 

  • Lun MP, Monuki ES, Lehtinen MK (2015a) Development and functions of the choroid plexus – cerebrospinal fluid system. Nat Rev Neurosci 16:445–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lun MP, Johnson MB, Watanabe M (2015b) Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci 35:4903–4916

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacAulay N, Zeuthen T (2010) Water transport between CNS compartments: contributions of Aquaporins and co-transporters. Neuroscience 168:941–956

    CAS  PubMed  Google Scholar 

  • Marin-Padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study. I. The sequential development of the cortical layers. Brain Res 23:167–183

    CAS  PubMed  Google Scholar 

  • Marin-Padilla M (2012) The human brain intracerebral microvascular system: development and structure. Front Neuroanat 6:38

    PubMed  PubMed Central  Google Scholar 

  • Matson DD, Crofton FDL (1960) Papilloma of the choroid plexus in childhood. J Neurosurg 17:1002–1027

    CAS  PubMed  Google Scholar 

  • McAllister JP (2012) Pathophysiology of congenital and neonatal hydrocephalus. Semin Fet Neonat Med 17:285–294

    Google Scholar 

  • McKechnie L, Vasudevan C, Levene M (2012) Neonatal outcome of congenital ventriculomegaly. Semin Fet Neonat Med 17:301–307

    Google Scholar 

  • McLone DG (1980) The subarachnoid space: a review. Childs Brain 6:113–130

    CAS  PubMed  Google Scholar 

  • McLone DG, Knepper PA (1989) The cause of Chiari II malformation: a unified theory. Pediatr Neurosci 15:1–12

    CAS  PubMed  Google Scholar 

  • Milhorat TH (1992) Classification of cerebral edemas with reference to hydrocephalus and pseudotumor cerebri. Childs Nerv Syst 8:301–306

    CAS  PubMed  Google Scholar 

  • Miller E, Widjaja E, Blaser S et al (2008) The old and the new: supratentorial MR findings in Chiari II malformations. Childs Nerv Syst 24:563–575

    PubMed  Google Scholar 

  • Muňoz A, Hinojosa J, Esparza J. Cisternography and ventriculography gadopentetate dimeglumine-enhanced MR imaging in pediatric patients: preliminary report. AJNR Am J Neuroradiol 2007, 28:889–894

    Google Scholar 

  • Napolitano M, Righini A, Zirpoli S et al (2004) Prenatal magnetic resonance imaging of rhombencephalosynapsis and associated brain anomalies: report of 3 cases. J Comput Assist Tomogr 28:762–765

    PubMed  Google Scholar 

  • Nimjee S, Powers CJ, McLendon RE et al (2010) Single-stage bilateral choroid plexectomy for choroid plexus papilloma in a patient presenting with high cerebrospinal fluid output. J Neurosurg Pediatrics 5:342–345

    Google Scholar 

  • Nomura ML, Barini R, De Andrade KC et al (2010) Congenital hydrocephalus: gestational and neonatal outcome. Arch Gynecol Obstet 282:607–614

    PubMed  Google Scholar 

  • O’Connell JEA (1943) The vascular factor in intracranial pressure and the maintenance of the cerebrospinal fluid circulation. Brain 66:204–228

    Google Scholar 

  • O’Rahilly R, Müller F (1986) The meninges in human development. J Neuropathol Exp Neurol 45:588–608

    PubMed  Google Scholar 

  • Oi S, Inagaki T, Shinoda M et al (2011) Guideline for management and treatment of fetal and congenital hydrocephalus: center of excellence – fetal and congenital hydrocephalus top 10 Japan guideline 2011. Childs Nerv Syst 27:1563–1570

    PubMed  Google Scholar 

  • Orešković D, Klarica M, Vukic M (2001) Does the secretion and circulation of the cerebrospinal fluid really exist? Medical Hypothese 56:622–624

    Google Scholar 

  • Orphanet (2006) ORPHA59315. Rhombencephalosynapsis. www.orpha.net

  • Ortega E, Muňoz RI, Luza N et al (2016) The value of early and comprehensive diagnoses in a human fetus with hydrocephalus and progressive obliteration of the aqueduct of Sylvius: case report. BMC Neurol 16:45

    PubMed  PubMed Central  Google Scholar 

  • Osaka K, Handa H, Matsumoto S, Yasuda M (1980) Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos. Childs Brain 6:26–38

    CAS  PubMed  Google Scholar 

  • Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papaiconomou C, Zakharov A, Azizi N et al (2004) Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Childs Nerv Syst 20:29–36

    CAS  PubMed  Google Scholar 

  • Park EH, Eide PK, Zurakowski D, Madsen JR (2012) Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus. J Neurosurg 117:1189–1196

    PubMed  Google Scholar 

  • Pasquier L, Marcorelles P, Loget P et al (2009) Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol 117:185–200

    PubMed  Google Scholar 

  • Passi GR, Bhatnagar S (2015) Rhombencephalosynapsis. Pediatr Neurol 52:551–652

    Google Scholar 

  • Paulsen AH, Lundar T, Lindegaard KF (2015) Pediatric hydrocephalus: 40 year outcomes in 128 hydrocephalic patients treated with shunts during childhood. Assessment of surgical outcome, work participation, and health-related quality of life. J Neurosurg Pediatrics 16:633–641

    Google Scholar 

  • Pellicer A, Valverde E, Gayá F et al (2001) Postnatal adaptation of brain circulation in preterm infants. Pediatr Neurol 24:103–109

    CAS  PubMed  Google Scholar 

  • Penn RD, Basati S, Sweetman B et al (2011) Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg 115:159–164

    PubMed  Google Scholar 

  • Pennybacker J, Russel DS (1943) Spontaneous ventricular rupture in hydrocephalus with subtentorial cyst formation. J Neurol Psychiatry 6:38–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pettorossi VE, Di Rocco C, Mancinelli R et al (1978a) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pulse pressure: rationale and method. Exp Neurol 59:30–39

    CAS  PubMed  Google Scholar 

  • Pettorossi VE, Di Rocco C, Caldarelli M et al (1978b) Influences of phasic changes in systemic blood pressure on intracranial pressure. Eur Neurol 17:216–225

    CAS  PubMed  Google Scholar 

  • Philips MF, Shanno G, Duhaime AC (1998) Treatment of villous hypertrophy of the choroid plexus by endoscopic contact coagulation. Pediatr Neurosurg 28:252–256

    CAS  PubMed  Google Scholar 

  • Pierga JY, Kalifa C, Terrier-Lacombe MJ et al (1993) Carcinoma of the choroid plexus: a pediatric experience. Med Ped Oncol 21:480–487

    CAS  Google Scholar 

  • Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9

    PubMed  PubMed Central  Google Scholar 

  • Pollock H, Hutchings M, Weller RO, Zhang ET (1997) Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J Anat 91:337–346

    Google Scholar 

  • Prayer D, Brugger PC, Prayer L (2004) Fetal MRI: techniques and protocols. Pediatr Radiol 34:685–693

    PubMed  Google Scholar 

  • Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:10

    Google Scholar 

  • Purin VR (1963) The importance of the cerebrospinal fluid system to the developing brain. In: Klosovskii BN (ed) The development of the brain and its disturbance by harmful factors. Pergamon Press, London, pp 83–95

    Google Scholar 

  • Rash JE, Yasamura T, Hudson CS et al (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95:11981–11986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raybaud C (2010) Normal and abnormal embryology and development of the intracranial vascular system. Neurosurg Clin N Am 21:399–426

    PubMed  Google Scholar 

  • Raybaud C (2016) MR assessment of pediatric hydrocephalus: a roadmap. Childs Nerv Syst 32:19–41

    PubMed  Google Scholar 

  • Raybaud C, Ahmad T, Rastegar N et al (2013) The premature brain: developmental and lesional anatomy. Neuroradiology 55(Suppl 2):S23–S40

    Google Scholar 

  • Redzic ZB, Preston JE, Duncan JA et al (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Cur Top Develop Biol 71:1–52

    CAS  Google Scholar 

  • Rekate HL (1993) Classification of slit-ventricle syndrome using intracranial pressure monitoring. Pediatr Neurosurg 19:15–20

    CAS  PubMed  Google Scholar 

  • Rekate HL (2011) A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst 27:1535–1541

    PubMed  PubMed Central  Google Scholar 

  • Rekate HL, Erwood S, Brodkey JA et al (1985–1986) Etiology of ventriculomegaly in choroid plexus papilloma. Pediatr Neurosci 12:196–201

    PubMed  Google Scholar 

  • Rekate HL, Nadkarni TD, Wallace D (2008) The importance of the cortical subarachnoid space in understanding hydrocephalus. J Neurosurg Pediatrics 2:1–11

    Google Scholar 

  • Roales-Buján R, Páez P, Guerra M et al (2012) Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol 124:531–546

    PubMed  PubMed Central  Google Scholar 

  • Robinson S (2012) Neonatal post hemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. A review. J Neurosurg Pediatrics 9:242–258

    Google Scholar 

  • Rodriguez EM, Oksche A, Montecinos H (2001) Human subcommissural organ, with particular emphasis on its secretory activity during the fetal life. Microsc Res Techn 52:573–590

    CAS  Google Scholar 

  • Rodriguez EM, Guerra MM, Vio K et al (2012) A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res 45:231–241

    PubMed  Google Scholar 

  • Rosman NP, Shands KN (1978) Hydrocephalus caused by increased intracranial venous pressure: a clinicopathological study. Ann Neurol 3:445–450

    CAS  PubMed  Google Scholar 

  • Rovira A, Capellades J, Grivé E et al (1999) Spontaneous ventriculostomy: report of three cases revealed by flow-sensitive phase-contrast cine MR imaging. Am J Neuroradiol 20:1647–1652

    CAS  PubMed  Google Scholar 

  • Russell DS (1949) Observations on the pathology of hydrocephalus. His Majesty’s Stationery Office, London

    Google Scholar 

  • Saehle T, Eide PK (2015) Intracranial pressure monitoring in pediatric and adult patients with hydrocephalus and tentative shunt failure: a single center experience over 10 years in 146 patients. J Neurosurg 122:1076–1086

    PubMed  Google Scholar 

  • Sainte-Rose C, Lacombe J, Pierre-Kahn A et al (1984) Intracranial venous sinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg 60:727–736

    CAS  PubMed  Google Scholar 

  • San Millán D, Gailloud P, Rüfenacht DA et al (2002) The craniocervical venous system in relation to cerebral venous drainage. AJNR Am J Neuroradiol 23:1500–1508

    Google Scholar 

  • Shirane R, Sato S, Sato K et al (1992) Cerebral blood flow and oxygen metabolism in infants with hydrocephalus. Childs Nerv Syst 8:118–123

    CAS  PubMed  Google Scholar 

  • Singhal A, Yang MMH, Sargent MA, Cochrane DD (2013) Does optic nerve sheath diameter on MRI decrease with clinically improved hydrocephalus? Childs Nerv Syst 29:269–274

    PubMed  Google Scholar 

  • Sival DA, Guerra M, den Dunnen WFA et al (2011) Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol 21:163–179

    CAS  PubMed  Google Scholar 

  • Siyahhan B, Knobloch V, de Zélicourt D et al (2014) Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J R Soc Interface 11:20131189

    PubMed  PubMed Central  Google Scholar 

  • Smith ZA, Moftakhar P, Malkasian D et al. (2007) Choroid plexus hyperplasia: surgical treatment and immunohistochemical results. J Neurosurg (3 Suppl Pediatrics) 107:255–262

    Google Scholar 

  • St George E, Natarajan K, Sgouros S (2004) Changes in ventricular volume in hydrocephalic children following successful endoscopic third ventriculostomy. Childs Nerv Syst 20:834–848

    PubMed  Google Scholar 

  • Staudt M, Braun C, Gerloff C et al (2006) Developing somatosensory projections bypass periventricular brain lesions. Neurology 67:522–525

    CAS  PubMed  Google Scholar 

  • Stephensen H, Tisell M, Wikkelsö C (2002) There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50:763–773

    PubMed  Google Scholar 

  • Strik C, Klose U, Erb M et al (2002) Intracranial oscillations of cerebrospinal fluid and blood flow: analysis with magnetic resonance imaging. J Magn Res Imag 15:251–258

    Google Scholar 

  • Stroobandt G, Thauvoy C, Gilliard C et al (1988) [Papilloma of the choroid plexus of the lateral ventricle without generalized hydrocephalus] [in French]. Neurochirurgie 34:128–132

    CAS  PubMed  Google Scholar 

  • Tamburrini G, Caldarelli M, Di Rocco F et al (2006) The role of endoscopic choroid plexus coagulation in the surgical management of bilateral choroid plexus hyperplasia. Childs Nerv Syst 22:605–608

    PubMed  Google Scholar 

  • Taylor W, Hayward R, Lasjaunias P et al (2001) Enigma of raised intracranial pressure in patients with complex craniosynostosis: the role of abnormal intracranial venous drainage. J Neurosurg 94:377–385

    CAS  PubMed  Google Scholar 

  • Tripathi BJ, Tripathi RC (1974) Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol 239:195–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsitouras V, Sgouros S (2011) Infantile posthemorrhagic hydrocephalus. Childs Nerv Syst 27:1595–1608

    PubMed  Google Scholar 

  • Tuli S, O’Hayon B, Drake J et al (1999) Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus. Neurosurgery 45:1329–1335

    CAS  PubMed  Google Scholar 

  • Tulipan N, Sutton LN, Bruner JP et al (2003) The effect of intrauterine myelomeningocele repair on the incidence of shunt-dependent hydrocephalus. Pediatr Neurosurg 38:27–33

    PubMed  Google Scholar 

  • Turnbull I, Drake C (1966) Membranous occlusion of the aqueduct of Sylvius. J Neurosurg 24:24–33

    Google Scholar 

  • Van Landingham M, Nguyen TV, Roberts A et al (2009) Risk factors of congenital hydrocephalus: a 10 year retrospective study. J Neurol Neurosurg Psychiatry 80:213–217

    PubMed  Google Scholar 

  • Vinchon M, Baroncini M, Delestret I (2012) Adult outcome of pediatric hydrocephalus. Childs Nerv Syst 28:847–854

    PubMed  PubMed Central  Google Scholar 

  • Virhammar J, Laurell K, Ahlgren A et al (2014) Idiopathic normal pressure hydrocephalus: cerebral perfusion measured with pCASL before and repeatedly after CSF removal. J Cereb Blood Flow Metab 34:1771–1778

    PubMed  PubMed Central  Google Scholar 

  • Volpe JJ. Neurology of the newborn, 4th edition. Saunders, Philadelphia 2001

    Google Scholar 

  • Wagner C, Batiz LF, Rodriguez S et al (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62:1019–1040

    CAS  PubMed  Google Scholar 

  • Wagshul ME, Chen JJ, Egnor MR et al (2006) Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg 104:810–819

    PubMed  Google Scholar 

  • Wagshul ME, Eide PK, Madsen JR (2011) The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids and Barriers CNS 8:5

    Google Scholar 

  • Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warf BC (2005) Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg (Suppl 6 Pediatrics) 103:475–481

    Google Scholar 

  • Warren DT, Hendson G, Cochrane DD (2009) Bilateral choroid plexus hyperplasia: a case report and management strategies. Childs Nerv Syst 25:1617–1622

    PubMed  Google Scholar 

  • Welch K, Strand R, Bresnan M, Cavazzuti V (1983) Congenital hydrocephalus due to villous hypertrophy of the telencephalic choroid plexuses. J Neurosurg 59:172–175

    CAS  PubMed  Google Scholar 

  • Whitehead MT, Vezina G (2014) Interhypothalamic adhesion: a series of 13 cases. AJNR Am J Neuroradiol 35:2002–2006

    CAS  PubMed  Google Scholar 

  • Worthington WC, Cathcart RS (1966) Ciliary currents on ependymal surfaces. Ann N Y Acad Sci 130:944–950

    PubMed  Google Scholar 

  • Xenos C, Sgouros S, Natarajan K (2002) Ventricular volume change in childhood. J Neurosurg 97:584–590

    PubMed  Google Scholar 

  • Yamada S, Miyazaki M, Kanazawa H et al (2008) Visualization of the cerebrospinal fluid movement with spin labeling at MR imaging. Preliminary results in normal and pathophysiologic conditions. Radiology 249(2):644–652

    PubMed  Google Scholar 

  • Yamasaki M, Thompson P, Lemmon V (1997) CRASH syndrome: mutations in L1CAM correlate with severity of the disease. Neuropediatrics 28:175–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki M, Nonaka M, Bamba Y et al (2012) Diagnosis, treatment and long-term outcomes of fetal hydrocephalus. Semin Fet Neonat Med 17:330–335

    Google Scholar 

  • Yasuda T, Tomita T, McLone DG, Donovan M (2002) Measurements of cerebrospinal fluid output through external ventricular drainage in one hundred infants and children: correlation with cerebrospinal fluid production. Pediatr Neurosurg 36:22–28

    PubMed  Google Scholar 

  • Yeom KW, Lober RM, Alexander A et al (2014) Hydrocephalus decreases arterial spin-labeled cerebral perfusion. AJNR Am J Neuroradiol 35:1433–1439

    CAS  PubMed  Google Scholar 

  • Zahl SM, Egge A, Helseth E, Wester K (2011) Benign external hydrocephalus: a review, with emphasis on management. Neurosurg Rev 34:417–432

    PubMed  PubMed Central  Google Scholar 

  • Zhang ET, Inman CBE, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XL, Di Rocco C (2013) Choroid plexus coagulation for hydrocephalus not due to CSF overproduction: a review. Childs Nerv Syst 29:35–42

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Raybaud .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Raybaud, C. (2020). Neuroimaging in Pediatric Hydrocephalus. In: Di Rocco, C., Pang, D., Rutka, J. (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-72168-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72168-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72167-5

  • Online ISBN: 978-3-319-72168-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics