Skip to main content

Pharmacodynamic Evaluation: Ocular Pharmacology

  • Reference work entry
  • First Online:
Drug Discovery and Evaluation: Methods in Clinical Pharmacology
  • 990 Accesses

Abstract

The eye is a specialized organ that provides a relatively easy access for direct visualization of the different anatomical structures and assessment of the diseases associated with them. Despite this, however, the diagnosis and treatment of eye diseases has proven difficult over the years. Ocular surface diseases include allergic conjunctivitis, infection (viral, bacterial, and fungal), inflammation, and dry eye. Major anterior chamber and lens-associated disorders include cataracts, presbyopia, iritis/ureitis, elevated intraocular pressure-associated glaucoma and pseudo-exfoliation glaucoma. Diseases that primarily effect the retina in the posterior segment of the eye include wet and dry age-related macular degeneration, diabetic macular edema and retinopathy, and glaucomatous optic neuropathy that involves the retinal sensory neurons (retinal ganglion cells) and their axons that form the optic nerve that connects the retina to the brain. Many decades of basic and applied research have resulted in the discovery and development of different types of pharmacological agents (small molecules), peptides, and antibodies that help clinically manage the various ocular disorders mentioned above. Recent advances in gene- and cellular-therapeutics, and production of suitable miniature devices, have also revolutionized ocular disease management. The pharmacotherapeutic and pharmacodynamic aspects of these modalities will be discussed here. This will include target protein localization, assessment of drug engagement with the target, and mechanism of action of the drug entities in cellular and whole-eye efficacy systems using normal and disease-based assays and animal models. Such in vitro screening and in vivo evaluation and the types of results obtained from such studies will be also described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Alexander SPH, Christopoulos A, Davenport AP et al (2017a) The concise guide to PHARMACOLOGY 2017/18: G protein-coupled receptors. Br J Pharmacol 174:S17–S129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander SPH, Striessnig J, Kelly E et al (2017b) The concise guide to PHARMACOLOGY 2017/18: voltage-gated ion channels. Br J Pharmacol 174:S160–S194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander SPH, Kelly E, Marrion NV et al (2017c) The concise guide to PHARMACOLOGY 2017/18: transporters. Br J Pharmacol 174:S360–S446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander SPH, Fabbro D, Kelly E et al (2017d) The concise guide to PHARMACOLOGY 2017/18: enzymes. Br J Pharmacol 174:S272–S359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Zamil WM, Yassin SA (2017) Recent developments in age-related macular degeneration: a review. Clin Interv Aging 12:1313–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambati J, Ambati BK, Yoo SH et al (2003) Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48:257–293

    PubMed  Google Scholar 

  • American Academy Ophthalmology – Eye Health Statistics – American Academy of Ophthalmology. https://www.aao.org/newsroom/eye-health-statistics

  • Anderson OA, Finkelstein A, Shima DT (2013) A2E induces IL-1β production in retinal pigment epithelial cells via the NLRP3 inflammasome. PLoS One 8:e67263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal S, Barathi VA, Iwata D et al (2015) Experimental autoimmune uveitis and other animal models of uveitis: an update. Indian J Ophthalmol 63:211–2118

    PubMed  PubMed Central  Google Scholar 

  • Batlle JF, Fantes F, Riss I et al (2016) Three-year follow-up of a novel aqueous humor microshunt. J Glaucoma 25:e58–e65

    PubMed  Google Scholar 

  • Baudouin C, Rolando M, Benitez Del Castillo JM, et al (2018) Reconsidering the central role of mucins in dry eye and ocular surface diseases. Prog Retin Eye Res. pii: S1350-9462 (18) 30062-4

    Google Scholar 

  • Cavet ME, DeCory HH (2018) The role of nitric oxide in the intraocular pressure lowering efficacy of latanoprostene bunod: review of nonclinical studies. J Ocul Pharmacol Ther 34:52–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chader GJ (2002) Animal models in research on retinal degenerations: past progress and future hope. Vis Res 42:393–399

    PubMed  Google Scholar 

  • Chen H-H, Namil A, Severns B et al (2014) In vivo optimization of 2,3-diaminopyrazine Rho Kinase inhibitors. Bioorg Med Chem Lett 24:1875–1879

    CAS  PubMed  Google Scholar 

  • Chen J, Qian H, Horai R et al (2015) Mouse models of experimental autoimmune uveitis: comparative analysis of adjuvant-induced vs spontaneous models of uveitis. Curr Mol Med 15:550–557

    PubMed  Google Scholar 

  • Chen L, Bai Y, Zhao M (2016) TLR4 inhibitor attenuates amyloid-b-induced angiogenic and inflammatory factors in ARPE-19 cells: implications for age-related macular degeneration. Mol Med Rep 13:3249–3256

    CAS  PubMed  Google Scholar 

  • Chen LJ, Ito S, Kai H et al (2017) Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Sci Rep 7:3538

    PubMed  PubMed Central  Google Scholar 

  • Clouzeau C, Godefrov D, Riancho L et al (2012) Hyperosmolarity potentiates toxic effects of benzalkonium chloride on conjunctival epithelial cells in vitro. Mol Vis 18:851–863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cordeiro MF, Normando EM, Cardoso MJ et al (2017) Real-time imaging of single neuronal cell apoptosis in patients with glaucoma. Brain 140:1757–1767

    PubMed  PubMed Central  Google Scholar 

  • Crider JY, Sharif NA (2001) Functional pharmacological evidence for EP2 and EP4 prostanoid receptors in immortalized human trabecular meshwork and N-PCE cells. J Ocul Pharmacol Ther 17:35–46

    CAS  PubMed  Google Scholar 

  • Da Cruz L, Fynes K, Georgiadis O et al (2018) Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. https://doi.org/10.1038/nbt.4114

  • Di Y, Chen XL (2018) Effects of LY294002 on the function of retinal endothelial cells in vitro. Int J Ophthalmol 11:1447–1450

    PubMed  PubMed Central  Google Scholar 

  • Dismuke WM, Sharif NA, Ellis DZ (2009) Human trabecular meshwork cell volume decrease by NO-independent soluble guanylate cyclase activators YC-1 and BAY-58-2667 involves the BKCa ion channel. Invest Ophthalmol Vis Sci 50:3353–3359

    PubMed  Google Scholar 

  • Dismuke WM, Sharif NA, Ellis DZ (2010) Endogenous regulation of human Schlemm’s canal cell volume by nitric oxide signaling. Invest Ophthalmol Vis Sci 51:5817–5824

    PubMed  Google Scholar 

  • Dogru M, Kojima T, Simsek C et al (2018) Potential role of oxidative stress in ocular surface inflammation and dry eye disease. Invest Ophthalmol Vis Sci 59:DES163–DES168

    CAS  PubMed  Google Scholar 

  • Du H, Xiao X, Stiles T et al (2016) Novel mechanistic interplay between products of oxidative stress and components of the complement system in AMD pathogenesis. Open J Ophthalmol 6:43–50

    PubMed  PubMed Central  Google Scholar 

  • Farjood F, Vargis E (2018) Novel devices for studying acute and chronic mechanical stress in retinal pigment epithelial cells. Lab Chip 18:3413–3424

    CAS  PubMed  Google Scholar 

  • Fuwa M, Toris CB, Fan S et al (2018) Effects of a novel selective EP2 receptor agonist, omidenepag isopropyl, on aqueous humor dynamics in laser-induced ocular hypertensive monkeys. J Ocul Pharmacol Ther 34:531–537

    CAS  PubMed  Google Scholar 

  • Galloway CA, Dalvi S, Hung SC et al (2017) Drusen in patient-derived hiPSC-RPE models of macular dystrophies. Proc Natl Acad Sci U S A 114:E8214–E8223

    Google Scholar 

  • Galloway CA, Dalvi S, Shadforth AMA et al (2018) Characterization of human iPSC-RPE on a prosthetic Brusch’s membrane manufactured from silk fibroin. Invest Ophthalmol Vis Sci 59:2792–2800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamache DA, Wei ZY, Weimer LK et al (2002) Corneal protection by the ocular mucin secretagogue 15(S)-HETE in a rabbit model of desiccation-induced corneal defect. J Ocular Pharmacol Ther. 18:349–361

    CAS  Google Scholar 

  • Gomes PJ (2014) Trends in prevalence and treatment of ocular allergy. Curr Opin Allergy Clin Immunol 14:451–456

    CAS  PubMed  Google Scholar 

  • Griffin BW, Klimko P, Crider JY et al (1999) AL-8810: a novel PGF analog with selective antagonist effects at the FP prostaglandin receptor. J Pharmacol Exp Ther 290:1278–1284

    CAS  PubMed  Google Scholar 

  • Groneberg DA, Bielory L, Fischer A et al (2003) Animal models of allergic and inflammatory conjunctivitis. Allergy 58:1101–1113

    CAS  PubMed  Google Scholar 

  • Hagan S, Fyfe MCT, Ofen-Frimpong B et al (2018) Narrow spectrum kinase inhibitors demonstrate promise for the treatment of dry eye disease and other ocular inflammatory disorders. Invest Ophthalmol Vis Sci 59:1443–1453

    CAS  PubMed  Google Scholar 

  • Hartman RR, Kompella UB (2018) Intravitreal, subretinal, and suprachoroidal injections: evolution of microneedles for drug delivery. J Ocular Pharmacol Ther 34:141–153

    CAS  Google Scholar 

  • He S, Stankowska DL, Ellis DZ et al (2018) Targets of neuroprotection in glaucoma. J Ocul Pharmacol Ther 34:85–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hellberg MR, McLaughlin MA, Sharif NA et al (2002) Identification and characterization of the ocular hypotensive efficacy of travoprost, a potent and selective FP prostaglandin receptor agonist, and AL-6598, a DP prostaglandin receptor agonist. Surv Ophthalmol 47(Suppl 1):S13–S33

    PubMed  Google Scholar 

  • Hernandez-Zimbron LF, Zamora-Alvarado R, Ochoa-Del la Paz L et al (2018) Age-related macular degeneration: new paradigms for treatment and management of AMD. Oxid Med Cell Longev: 2018:8374647

    Google Scholar 

  • Hines-Beard J, Wesley S, Bond WS et al (2016) Virus-mediated EpoR76E gene therapy preserves vision in a glaucoma model by modulating neuroinflammation and decreasing oxidative stress. J Neuroinflammation 13:39

    PubMed  PubMed Central  Google Scholar 

  • Hollander H, Makarov F, Stefani FH et al (1995) Evidence of constriction of optic axons at the lamina cribrosa in the normotensive eye in humans and other mammals. Ophthalmic Res 27:296–309

    CAS  PubMed  Google Scholar 

  • Holló G, Topouzis F, Fechtner RD (2014) Fixed-combination intraocular pressure-lowering therapy for glaucoma and ocular hypertension: advantages in clinical practice. Expert Opin Pharmacother 15:1737–1747

    PubMed  Google Scholar 

  • Hovakimyan M, Ramoth T, Lobler M et al (2012) Evaluation of protective effects of trehalose on desiccation of epithelial cells in three dimensional reconstructed human corneal epithelium. Curr Eye Res 37:082–089

    Google Scholar 

  • Ishikawa M, Jin D, Sawada Y et al (2015) Future therapies of wet age-related macular degeneration. J Ophthalmol: 2015:138070

    Google Scholar 

  • Jett BD, Hatter KL, Huycke MM et al (1997) Simplified agar plate method for quantifying viable bacteria. Biotechniques 23:648–650

    CAS  PubMed  Google Scholar 

  • Jiang L, Zhang S, Chen R et al (2018) Effects of the tyrosinase-dependent dopaminergic system on refractive error development in guinea pigs. Invest Ophthalmol Vis Sci 59:4631–4638

    CAS  PubMed  Google Scholar 

  • Jonas JB, Aung T, Bourne RR et al (2017) Glaucoma. Lancet 390:2183–2193

    PubMed  Google Scholar 

  • Kashani A, Lebkowski JS, Rahhal FM et al (2018) A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med 10:eaao4097, 10 pages

    PubMed  Google Scholar 

  • Katoli P, Sharif NA, Sule A et al (2010) NPR-B natriuretic peptide receptors in human corneal epithelium: mRNA, immunohistochemical, protein and biochemical pharmacology studies. Mol Vis 16:1241–1252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly CR, Williams GW, Sharif NA (2003) Real-time intracellular Ca2+-mobilization by travoprost acid, bimatoprost, unoprostone and other analogs via endogenous mouse, rat and cloned human FP prostaglandin receptors. J Pharmacol Exp Ther 304:238–245

    CAS  PubMed  Google Scholar 

  • Kirihara T, Taniguchi T, Yamamura K et al (2018) Pharmacologic characterization of omidenepag isopropyl, a novel selective EP2 receptor agonist, as an ocular hypotensive agent. Invest Ophthalmol Vis Sci 59:145–153

    CAS  PubMed  Google Scholar 

  • Lambert NG, Singh MK, ElShelmani H et al (2016) Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 54:64–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Ding X, Li J et al (2016) Aqueous humor cytokine profiling in patients with wet AMD. Mol Vis 22:352–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CH, Wang Z, Ye S et al (2017) Animal models of ocular angiogenesis: from development to pathologies. FASEB J 31:4665–4681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CW, Sherman B, Moore LA et al (2018) Discovery and preclinical development of netarsudil, a novel ocular hypotensive agent for the treatment of glaucoma. J Ocul Pharmacol Ther 34:40–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire MG, Martin DF, Ying G-S et al (2016) Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration. The comparison of age-related macular degeneration treatments trials. Ophthalmology 123:1751–1761

    PubMed  Google Scholar 

  • Marquart ME (2011) Animal models of bacterial keratitis. J Biomed Biotechnol 2011:680642

    PubMed  PubMed Central  Google Scholar 

  • Marshall LL, Roach JM (2016) Treatment of dry eye disease. Consult Pharm 31:96–106

    PubMed  Google Scholar 

  • McNally S, O’Brien CJ (2014) Metabolomics/proteomics strategies used to identify biomarkers for exfoliation glaucoma. J Glaucoma 23(8 Suppl 1):S51–S54

    PubMed  Google Scholar 

  • Mead B, Ahmed Z, Tomarev S (2018) Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in a genetic DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 59:5473–5480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messmer EM (2015) The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int 112:71–81

    PubMed  PubMed Central  Google Scholar 

  • Negelhout TJ, Gamache DA, Roberts L et al (2005) Preservation of tear film integrity and inhibition of corneal injury by dexamethasone in a rabbit model of lacrimal gland inflammation-induced dry eye. J Ocular Pharmacol Ther 21:139–148

    Google Scholar 

  • NEI (2014) Eye Disease Statistics Fact Sheet – National Eye Institute – NIH. https://nei.nih.gov/sites/default/.../NEI_Eye_Disease_Statistics_Factsheet_2014_V10.pdf

  • Nguyen QD, Merrill PT, Sepah YJ et al (2018) Intravitreal sirolimus for the treatment of noninfectious uveitis: evolution through preclinical and clinical studies. Ophthalmology 125:1984–1993

    PubMed  Google Scholar 

  • O’Brien TP (2013) Allergic conjunctivitis: an update on diagnosis and management. Curr Opin Allergy Clin Immunol 13:543–549

    PubMed  Google Scholar 

  • Ohia SE, Njie-Mbye YF, Robinson J et al (2018) Serotonin-2B/2C receptors-mediate bovine ciliary muscle contraction: role in IOP regulation. J Ocul Pharmacol Ther 34:70–75

    CAS  PubMed  Google Scholar 

  • Offord E, Sharif NA, Mace K et al (1999) Immortalized human corneal epithelial cells for ocular toxicity and inflammation studies. Invest Ophthalmol Vis Sci 40:1091–1101

    CAS  PubMed  Google Scholar 

  • Olivares AM, Althoff K, Chen GF et al (2017) Animal models of diabetic retinopathy. Curr Diab Rep 17:93. (17 pages)

    PubMed  PubMed Central  Google Scholar 

  • Osborne NN, Álvarez CN, del Olmo Aguado S (2014) Targeting mitochondrial dysfunction as in aging and glaucoma. Drug Discov Today 19:1613–1622

    CAS  PubMed  Google Scholar 

  • Patil R, Xu S, Rusinko A, Feng Z et al (2016) Rapid identification of novel inhibitors of aquaporin-1 channel by high-throughput screening. Chem Biol Drug Des 87:794–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pepple KL, Wilson L, Van Gelder RN (2018) Comparison of aqueous and vitreous lymphocyte population from two rat models of experimental uveitis. Invest Ophthalmol Vis Sci 59:2504–2511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinnock A, Shivshetty N, Roy S et al (2017) Ex vivo rabbit and human corneas as models for bacterial and fungal keratitis. Graefes Arch Clin Exp Ophthalmol 255:333–342

    PubMed  Google Scholar 

  • Qin J, Rinella N, Zhang Q et al (2018) OCT angiography and cone photoreceptor imaging in geographic atrophy. Invest Ophthalmol Vis Sci 59:5985–5992

    PubMed  PubMed Central  Google Scholar 

  • Quigley HA, McKinnon SJ, Zack DJ et al (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 41:3460–3466

    CAS  PubMed  Google Scholar 

  • Ramachandran C, Patil RV, Sharif NA et al (2011) Effect of elevated intracellular cAMP on actomyosin contraction in bovine trabecular meshwork cells. Invest Ophthalmol Vis Sci 52:1474–1485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rickman CB, Farsiu S, Toth CA et al (2013) Dry age-related macular degeneration: mechanism, therapeutic targets, and imaging. Invest Ophthalmol Vis Sci 54:ORSF68–ORSF80

    Google Scholar 

  • Schaeffel F, Feldkaemper M (2015) Animal models in myopia research. Clin Exp Optom 98:507–517

    PubMed  Google Scholar 

  • Sharif NA (2017) Ocular hypertension and glaucoma: a review and current perspectives. Int. J. ophthalmol Vis Sci. 2:22–36

    Google Scholar 

  • Sharif NA (2018a) iDrugs and iDevices discovery and development- preclinical assays, techniques and animal model studies for ocular hypotensives and neuroprotectants. J Ocular Pharmacol Ther 34:7–39

    CAS  Google Scholar 

  • Sharif NA (2018b) Glaucomatous optic neuropathy treatment options: the promise of novel therapeutics, techniques and tools to help preserve vision. Neural Regen Res 13:1145–1150

    PubMed  PubMed Central  Google Scholar 

  • Sharif NA, Klimko P (2019) FP prostaglandin-receptor antagonists: discovery, pharmacological characterization and therapeutic utility. Br J Pharmacol. https://doi.org/10.1111/bph.14335

  • Sharif NA, May JA (2011) Potential for serotonergic agents to treat elevated intraocular pressure and glaucoma: focus on 5HT2 receptor agonists. Expert Rev Ophthalmol 6:105–120

    CAS  Google Scholar 

  • Sharif NA, Xu SX (1999) Human retina contains polyamine-sensitive [3H]-ifenprodil binding sites: implications for neuroprotection? Br J Pharmacol 83: 236–240.

    Google Scholar 

  • Sharif NA, Xu S, Yanni JM (1994) Histamine receptor-subtype affinities, selectivities and potencies of emedastine, a novel H1-selective antagonist, and other ocularly employed antihistamines. Drug Dev Res 33:448–453

    CAS  Google Scholar 

  • Sharif NA, Xu SX, Miller ST et al (1996) Characterization of the ocular anti-allergic and anti-histaminic effects of olopatadine, a novel drug for treating ocular allergic diseases. J Pharmacol Exp Ther 278:1251–1260

    Google Scholar 

  • Sharif NA, Kelly CR, Crider JY et al (2003) Ocular hypotensive FP prostaglandin (PG) analogs: PG receptor subtype binding affinities and selectivities, and agonist potencies at FP and other PG receptors in cultured cells. J Ocul Pharmacol Ther 19:501–515

    Google Scholar 

  • Sharif NA, McLaughlin MA, Kelly CR (2007) AL-34662: a potent, selective, and efficacious ocular hypotensive serotonin-2 receptor agonist. J Ocular Pharmacol Ther 23:1–13

    CAS  Google Scholar 

  • Sharif NA, Katoli P, Scott D et al (2014) FR-190997, a non-peptide bradykinin B2-receptor partial agonist, is a potent and efficacious intraocular pressure lowering agent in ocular hypertensive cynomolgus monkeys. Drug Dev Res 5:211–223

    Google Scholar 

  • Sharif NA, Williams GW, Davis TL (2000) Pharmacology and autoradiography of human DP prostanoid receptors using [3H]-BWA868C, a DP receptor-selective antagonist radioligand. Br J Ophthalmol 131:1025–1038

    Google Scholar 

  • Shen W, Lee S-R, Yam M et al (2018) A combination therapy targeting endoglin and VEGF-A prevents sub-retinal fibro-neovascularization caused by induced Muller cell disruption. Invest Ophthalmol Vis Sci 59:6075–6088

    CAS  PubMed  Google Scholar 

  • Simo R, Stitt AW, Gardner TW (2018) Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia 61:1902–1912

    PubMed  PubMed Central  Google Scholar 

  • Smedowski A, Liu X, Pietrucha-Dutczak M et al (2016) Predegenerated Schwann cells--a novel prospect for cell therapy for glaucoma: neuroprotection, neuroregeneration and neuroplasticity. Sci Rep 6:23187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stern ME, Pflugfelder SC (2017) What have we learned from animal models of dry eye. Int Ophthalmol Clin 57:109–118

    PubMed  PubMed Central  Google Scholar 

  • Tezel G, Yang X, Luo C et al (2010) Oxidative stress and the regulation of complement activation in human glaucoma. Invest Ophthalmol Vis Sci 51:5071–5082

    PubMed  PubMed Central  Google Scholar 

  • Tham Y-C, Li X, Wong TY et al (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040. Ophthalmology 121:2081–2090

    PubMed  Google Scholar 

  • Thomas D, Papadopoulo O, Doshi R et al (2000) Retinal ATP and phosphorus metabolites: reduction by hypoxia and recovery with MK-801 and diltiazem. Med Sci Res 28:87–91

    Google Scholar 

  • Tien T, Zhang J, Muto T et al (2017) High glucose induces mitochondrial dysfunction in retinal Müller cells: implications for diabetic retinopathy. Invest Ophthalmol Vis Sci 58:2915–2921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsirouki T, Dastiridou A, Symeonidis C et al (2018) A focus on the epidemiology of uveitis. Ocul Immunol Inflamm 26:2–16

    PubMed  Google Scholar 

  • Venugopalan P, Wang Y, Nguyen T et al (2016) Transplanted neurons integrate into adult retinas and respond to light. Nat Commun 7:10472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vitoux MA, Kessal K, Baudouin C et al (2018) Formaldehyde gas exposure increases inflammation in an in vitro model of dry eye. Toxicol Sci 1(160):108–117

    Google Scholar 

  • Wang W, Lo ACY (2018) Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci 19:1816, 14 pages

    PubMed Central  Google Scholar 

  • Wang JW, Woodward DF, Stamer WD (2013) Differential effects of prostaglandin E2-sensitive receptors on contractility of human ocular cells that regulate conventional outflow. Invest Ophthalmol Vis Sci 54:4782–4790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterbury LD, Galindo D, Villanueva L et al (2011) Ocular penetration and anti-inflammatory activity of ketorolac 0.45% and bromfenac 0.09% against lipopolysaccharide-induced inflammation. J Ocul Pharmacol Ther 27:173–179

    Google Scholar 

  • Waugh N, Loveman E, Colquitt J et al (2018) Treatments for dry age-related macular degeneration and Stargardt disease: a systematic review. Health Technol Assess 22:1–168

    PubMed  PubMed Central  Google Scholar 

  • Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–1911

    PubMed  PubMed Central  Google Scholar 

  • WHO (2018) Blindness and vision impairment. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. WHO priority eye diseases. https://www.who.int/blindness/causes/priority/en/

  • Wiederholt M, Thieme H, Stumpff F (2000) The regulation of trabecular meshwork and ciliary muscle contractility. Prog Retin Eye Res 19:271–295

    CAS  PubMed  Google Scholar 

  • Willcox MDP (2011) Review of resistance of ocular isolates of Pseudomonas aeruginosa and staphylococci from keratitis to ciprofloxacin, gentamicin and cephalosporins. Clin Exp Optom 94:161–168

    PubMed  Google Scholar 

  • Williams PA, Harder JM, Foxworth NE et al (2017) Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 355:756–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Weinreb RN, Leung CK (2014) Optic nerve head deformation in glaucoma: the temporal relationship between optic nerve head surface depression and retinal nerve fiber layer thinning. Ophthalmology 121:2362–2370

    PubMed  Google Scholar 

  • Yang S, Zhao J, Sun X (2016) Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther 10:1857–1867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Pan M, Reinech PS et al (2018) Prostaglandin F2α receptor modulation affects eye development in guinea pigs. Basic Clin Pharmacol Toxicol 123:263–270

    CAS  PubMed  Google Scholar 

  • Yanni JM, Miller ST, Gamache DA et al (1997) A comparison of topical ocular anti-allergy drugs: effects on human conjunctival mast cell mediator release. Ann Allergy Asthma Immunol 79:541–545

    Google Scholar 

  • Yanni JM, Sharif NA, Gamache DA et al (1999) A current appreciation of sites for pharmacological intervention in allergic conjunctivitis: effects of new topical ocular drugs. Acta Ophthalmol Scand 77:33–37

    Google Scholar 

  • Yucel YH, Zhang Q, Gupta N et al (2000) Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 118:378–384

    CAS  PubMed  Google Scholar 

  • Zhang S, Yu N, Zhang R et al (2016) Interleukin-17A induces IL-1β secretion from RPE cells via NLRP3. Invest Ophthalmol Vis Sci 57:312–319

    CAS  PubMed  Google Scholar 

  • Zhang TT, Muto J, Kim D et al (2017a) High glucose induced mitochondrial dysfunction in retinal Muller cells: implications for diabetic retinopathy. Invest Ophthalmol Vis Sci 58:2915–2921

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Abdel-Razek O, Wang G (2017b) The mouse model for ocular surface staphylococcus aureus infection. Curr Protoc Mouse Biol 7:55–63

    PubMed  PubMed Central  Google Scholar 

  • Zhu H, Kochevar IE, Behlau I et al (2017) Antimicrobial blue light therapy for infectious keratitis: ex vivo and in vivo studies. Invest Ophthalmol Vis Sci 58:586–593

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najam A. Sharif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sharif, N.A. (2020). Pharmacodynamic Evaluation: Ocular Pharmacology. In: Hock, F., Gralinski, M. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-68864-0_54

Download citation

Publish with us

Policies and ethics