Skip to main content

Modeling and Simulation for Security: An Overview

  • Living reference work entry
  • First Online:
Handbook of Security Science
  • 25 Accesses

Abstract

This chapter provides an overview of modeling and simulation for security, discussing threat identification, threat modeling, environment design, human behavior, transportation modeling, visualization, and communication of results. Readers are provided bounding strategies for defining each step and given suggestions for software tools to explore different security modeling scenarios. This discussion includes agent-based modeling, modern machine learning tools, new visualization options, and suggestions to share results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguirre BE, Torres MR, Gill KB, Lawrence Hotchkiss H (2011) Normative collective behavior in the station building fire. Soc Sci Q 92(1):100–118

    Article  Google Scholar 

  • Best E (2013) Incorporating groups, collective behavior, and information visualization in agent-based models of evacuation. (Doctoral dissertation, University of Delaware)

    Google Scholar 

  • Brandon N, Dionisio KL, Isaacs K, Tornero-Velez R, Kapraun D, Setzer RW, Price PS (2020) Simulating exposure-related behaviors using agent-based models embedded with needs-based artificial intelligence. J Expo Sci Environ Epidemiol 30(1):184–193

    Article  Google Scholar 

  • Brenner C, Dold C, Ripperda N (2008) Coarse orientation of terrestrial laser scans in urban environments. ISPRS J Photogramm Remote Sens 63(1):4–18

    Article  ADS  Google Scholar 

  • Buller MJ, Delves SK, Fogarty AL, Veenstra BJ (2021) On the real-time prevention and monitoring of exertional heat illness in military personnel. J Sci Med Sport

    Google Scholar 

  • Dehning J, Zierenberg J, Spitzner FP, Wibral M, Neto JP, Wilczek M, Priesemann V (2020) Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science 369(6500)

    Google Scholar 

  • Federal Emergency Management Agency (FEMA) (2021) Hazus. FEMA Natural Hazards Risk Assessment Program

    Google Scholar 

  • Global Facility for Disaster Reduction and Recovery (GFDRR) (2014) Understanding risk: review of open source and open access software packages available to quantify risk from Natural Hazards

    Google Scholar 

  • Graehling Q, Asari V, Varney N (2021) FEAR: feature extraction for aerial registration in large-scale LiDAR point clouds. In: Multimodal image exploitation and learning 2021, vol 11734. International Society for Optics and Photonics, p 1173409

    Google Scholar 

  • Grosshandler W, Bryner N, Madrzykowski D, Kuntz K (2005) Report of the technical investigation of the station nightclub fire: appendices. NIST NCSTAR 2

    Google Scholar 

  • Guo Q, He Z (2021) Prediction of the confirmed cases and deaths of global COVID-19 using artificial intelligence. Environ Sci Pollut Res 28(9):11672–11682

    Article  Google Scholar 

  • Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybernetics 4(2):100–107

    Article  Google Scholar 

  • Heris MP, Foks NL, Bagstad KJ, Troy A, Ancona ZH (2020) A rasterized building footprint dataset for the United States. Sci Data 7(1):1–10

    Article  Google Scholar 

  • Hooijer A, Vernimmen R (2021) Global LiDAR land elevation data reveal greatest sea-level rise vulnerability in the tropics. Nat Commun 12(1):1–7

    Article  Google Scholar 

  • Institute for Disease Modeling (IDMOD) (2021) Explore IDM’s open-source software

    Google Scholar 

  • Ivanov D (2020) Predicting the impacts of epidemic outbreaks on global supply chains: a simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Trans Res Part E 136:101922

    Article  Google Scholar 

  • Kataoka Y, Gray P (2018) Real-time power performance prediction in tour de France. In: International workshop on machine learning and data Mining for Sports Analytics. Springer, Cham, pp 121–130

    Google Scholar 

  • Kavak H, Padilla JJ, Vernon-Bido D, Diallo SY, Gore R, Shetty S (2021) Simulation for cybersecurity: state of the art and future directions. J Cybersecurity 7(1):tyab005

    Article  Google Scholar 

  • Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proceedings of the royal society of London. Series A, Containing papers of a mathematical and physical character 115(772):700–721

    MATH  Google Scholar 

  • LaFree G, Dugan L (2007) Introducing the global terrorism database. Terrorism Polit Violence 19(2):181–204

    Article  Google Scholar 

  • Laksono D, Aditya T (2019) Utilizing a game engine for interactive 3D topographic data visualization. ISPRS Int J Geo Inf 8(8):361

    Article  Google Scholar 

  • Lorscheid I, Heine BO, Meyer M (2012) Opening the ‘black box’of simulations: increased transparency and effective communication through the systematic design of experiments. Computational and Mathematical Organization Theory 18(1):22–62

    Article  Google Scholar 

  • Manivasagam S, Wang S, Wong K, Zeng W, Sazanovich M, Tan S, … Urtasun R (2020) Lidarsim: realistic lidar simulation by leveraging the real world. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11167–11176

    Google Scholar 

  • Microsoft (2018) Computer generated building footprints for the United States. https://github.com/microsoft/USBuildingFootprints

  • Moein S, Nickaeen N, Roointan A, Borhani N, Heidary Z, Javanmard SH, … Gheisari Y (2021) Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan. Sci Rep 11(1):1–9

    Google Scholar 

  • New J, Adams M, Berres A, Bass B, Clinton N (2021) Model America â data and models of every US building. Oak ridge National lab.(ORNL), oak ridge, TN (United States). Oak ridge leadership computing facility (OLCF); Argonne National Laboratory (ANL) leadership computing facility (ALCF)

    Google Scholar 

  • Parshina-Kottas Y, Saget B, Patanjali K, Fleisher O, Gianordoli G (2020) This 3-D simulation shows why social distancing is so important. New York Times

    Google Scholar 

  • Paté-Cornell E, Guikema S (2002) Probabilistic modeling of terrorist threats: a systems analysis approach to setting priorities among countermeasures. Mil Oper Res:5–23

    Google Scholar 

  • Pei S, Dahl KA, Yamana TK, Licker R, Shaman J (2020) Compound risks of hurricane evacuation amid the COVID-19 pandemic in the United States. Geohealth 4(12):e2020GH000319

    Article  Google Scholar 

  • Pennsylvania Emergency Management Agency (PEMA) (2018) 2018 Commonwealth of Pennsylvania State Hazard Mitigation Plan Update

    Google Scholar 

  • Pirhalla M (2020) Dispersion modeling systems relevant to homeland security preparedness and response. United States Environmental Protection Agency. EPA/600/R-20/338

    Google Scholar 

  • Railsback SF, Grimm V (2019) Agent-based and individual-based modeling: a practical introduction. Princeton University Press

    MATH  Google Scholar 

  • RAND Corporation (2021) RAND database of worldwide terrorism incidents

    Google Scholar 

  • Rathnayake WP (2018) Usage of mixed reality for military simulations. In: 2018 international conference on current trends towards converging technologies (ICCTCT). IEEE, pp 1–5

    Google Scholar 

  • Roda WC, Varughese MB, Han D, Li MY (2020) Why is it difficult to accurately predict the COVID-19 epidemic? Infectious Dis Model 5:271–281

    Article  Google Scholar 

  • Russell S, Norvig P (2020) Artificial intelligence: a modern approach, 4th edn. Pearson

    MATH  Google Scholar 

  • Shan T, Wang J, Chen F, Szenher P, Englot B (2020) Simulation-based lidar super-resolution for ground vehicles. Robot Auton Syst 134:103647

    Article  Google Scholar 

  • Singh D (2019) The ethical issues of a/B testing in the tech world. IXD@Pratt

    Google Scholar 

  • U.S. Army Corps of Engineers (USACE) (2021) SimSuite. USACE Readiness Support Center

    Google Scholar 

  • van der Gun JP, Pel AJ, van Arem B (2016) A general activity-based methodology for simulating multimodal transportation networks during emergencies. Eur J Transp Infrastruct Res 16(3)

    Google Scholar 

  • Wahbeh W, Ammann M, Nebiker S, van Eggermond M, Erath A (2021) Image-based reality-capturing and 3d modelling for the creation of VR cycling simulations. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 4:225–232

    Article  ADS  Google Scholar 

  • Weaver GA, Marla L (2018) Cyber-physical simulation and optimal mitigation for shipping port operations. In: 2018 winter simulation conference (WSC). IEEE, pp 2747–2758

    Chapter  Google Scholar 

  • Weissman GE, Crane-Droesch A, Chivers C, Luong T, Hanish A, Levy MZ, … Halpern, SD (2020) Locally informed simulation to predict hospital capacity needs during the COVID-19 pandemic. Ann Intern Med 173(1):21–28

    Google Scholar 

  • Wenzler I (2009) The ten commandments for translating simulation results into real-life performance. Simul Gaming 40(1):98–109

    Article  Google Scholar 

  • Wermann AG, Bortolozzo MC, da Silva EG, Schaeffer-Filho A, Gaspary LP, Barcellos M (2016) ASTORIA: a framework for attack simulation and evaluation in smart grids. In: NOMS 2016-2016 IEEE/IFIP network operations and Management symposium. IEEE, pp 273–280

    Chapter  Google Scholar 

  • Yin T (2018) The perspective of the reasonable officer on the scene: my trip to the shooting simulator. Ohio St J Crim L 16:207

    Google Scholar 

  • Zhang Y, Yang N, Lall U (2016) Modeling and simulation of the vulnerability of interdependent power-water infrastructure networks to cascading failures. J Syst Sci Syst Eng 25(1):102–118

    Article  Google Scholar 

  • Zhao X, Lovreglio R, Nilsson D (2020) Modelling and interpreting pre-evacuation decision-making using machine learning. Autom Constr 113:103140

    Article  Google Scholar 

  • Zhu R, Hu X, Li X, Ye H, Jia N (2020) Modeling and risk analysis of chemical terrorist attacks: a bayesian network method. Int J Environ Res Public Health 17(6):2051

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Best .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Best, E. (2022). Modeling and Simulation for Security: An Overview. In: Masys, A.J. (eds) Handbook of Security Science. Springer, Cham. https://doi.org/10.1007/978-3-319-51761-2_53-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51761-2_53-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51761-2

  • Online ISBN: 978-3-319-51761-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics