Skip to main content

Vitamin Formation from Fatty Acid Precursors

  • Reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Enzymes that require biotin or lipoic acid cofactors for their activity occur in all domains of life and play essential roles in metabolism. The de novo synthesis of these vitamins depends on the production of fatty acid precursors and has been most extensively characterized in Escherichia coli and Bacillus species. The octanoyl-acyl carrier protein precursor for lipoic acid is synthesized in reactions catalyzed by the fatty acid biosynthesis (Fab) enzymes. The octanoyl moiety is linked to the lipoyl domains of lipoic acid-dependent enzymes and then converted to lipoate by lipoyl synthase. For biotin biosynthesis, both the BioC-BioH pathway in E. coli and the BioI pathway in Bacillus species rely on Fab enzymes to produce the pimeloyl-acyl carrier protein required for biotin production. This review presents an overview of the biosynthetic pathways for biotin and lipoic acid, with an emphasis on the role of fatty acid metabolism in their synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 489.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beckett D (2007) Biotin sensing: universal influence of biotin status on transcription. Annu Rev Genet 41:443–464

    Article  CAS  Google Scholar 

  • Bi H, Zhu L, Jia J, Cronan JE (2016) A biotin biosynthesis gene restricted to Helicobacter. Sci Rep 6:21162. https://doi.org/10.1038/srep21162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bower S, Perkins JB, Yocum RR, Howitt CL, Rahaim P, Pero J (1996) Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J Bacteriol 178:4122–4130

    Article  CAS  Google Scholar 

  • Chan DI, Vogel HJ (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430:1–19

    Article  CAS  Google Scholar 

  • Choi-Rhee E, Cronan JE (2005) Biotin synthase is catalytic in vivo, but catalysis engenders destruction of the protein. Chem Biol 12:461–468

    Article  CAS  Google Scholar 

  • Cronan JE (2014) Biotin and lipoic acid: synthesis, attachment, and regulation. EcoSal Plus. https://doi.org/10.1128/ecosalplus ESP-0001-2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Cronan JE (2016) Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiol Mol Biol Rev 80:429–450

    Article  CAS  Google Scholar 

  • Cronan JE, Lin S (2011) Synthesis of the α, ω-dicarboxylic acid precursor of biotin by the canonical fatty acid biosynthetic pathway. Curr Opinion Chem Biol 15:407–413

    Article  CAS  Google Scholar 

  • Cryle MJ, Schlichting I (2008) Structural insights from a P450 carrier protein complex reveal how specificity is achieved in the P450BioI ACP complex. Proc Natl Acad Sci U S A 105:15696–15701

    Article  CAS  Google Scholar 

  • Dibrova DV, Galperin MY, Mulkidjanian AY (2014) Phylogenomic reconstruction of archeal fatty acid metabolism. Environ Microbiol 16:907–918

    Article  CAS  Google Scholar 

  • Feng Y, Cronan JE (2014) PdhR, the pyruvate dehydrogenase repressor, does not regulate lipoic acid synthesis. Res Microbiol 165:429–438

    Article  CAS  Google Scholar 

  • Feng Y, Napier BA, Manandhar M, Henke SK, Weiss DS, Cronan JE (2014) A Francisella virulence factor catalyzes an essential reaction of biotin biosynthesis. Mol Microbiol 91:300–314

    Article  CAS  Google Scholar 

  • Feng Y, Kumar R, Ravcheev DA, Zhang H (2015) Paracoccus denitrificans possesses two BioR homologs having a role in the regulation of biotin metabolism. Microbiol Open 4:644–659

    Article  CAS  Google Scholar 

  • Guillén-Navarro K, Encarnación S, Dunn MF (2005) Biotin biosynthesis, transport and utilization in rhizobia. FEMS Microbiol Lett 246:159–165

    Article  Google Scholar 

  • Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its application towards the production of fatty acid based biofuels. Biotechnol Biofuels 7:7

    Article  Google Scholar 

  • Jordan SW, Cronan JE (1997) A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J Biol Chem 272:17903–17906

    Article  CAS  Google Scholar 

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2016) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361

    Article  Google Scholar 

  • Lin S (2012) Biotin synthesis in Escherichia coli. PhD thesis, University of Illinois at Urbana-Champaign, 140 pp

    Google Scholar 

  • Lin S, Cronan JE (2011) Closing in on complete pathways of biotin biosynthesis. Mol BioSyst 7:1811–1821

    Article  CAS  Google Scholar 

  • Lin S, Cronan JE (2012) The BioC O-methyltransferase catalyzes methyl esterification of malonyl-acyl carrier protein, an essential step in biotin synthesis. J Biol Chem 287:37010–37020

    Article  CAS  Google Scholar 

  • Lin S, Hanson RE, Cronan JE (2010) Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat Chem Biol 6:682–688

    Article  CAS  Google Scholar 

  • López-Lara IM, Geiger O (2010) Formation of fatty acids. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 385–393

    Chapter  Google Scholar 

  • Martin N, Christensen QH, Mansilla MC, Cronan JE, de Mendoza D (2011) A novel two-gene requirement for the octanoyltransfer reaction of Bacillus subtilis lipoic acid biosynthesis. Mol Microbiol 80:335–349

    Article  CAS  Google Scholar 

  • Morris TW, Reed KE, Cronan JE Jr (1995) Lipoic acid metabolism in Escherichia coli: the lplA and lipB genes define redundant pathways for ligation of lipoyl groups to apoprotein. J Bacteriol 177:1–10

    Article  CAS  Google Scholar 

  • Perham RN (2000) Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 69:961–1004

    Article  CAS  Google Scholar 

  • Ploux O, Soularue P, Marquet A, Gloeckler R, Lemoine Y (1992) Investigation of the first step of biotin biosynthesis in Bacillus sphaericus. Biochem J 287:685–690

    Article  CAS  Google Scholar 

  • Qui X, Janson CA, Smith WW, Head M, Lonsdale J, Konstantinidis AK (2001) Refined structures of ß-ketoacyl-acyl carrier protein synthase III. J Mol Biol 307:341–356

    Article  Google Scholar 

  • Rock CO (2009) Opening a new path to lipoic acid. J Bacteriol 191:6782–6784

    Article  CAS  Google Scholar 

  • Rock CO, Jackowski S (2002) Forty years of bacterial fatty acid synthesis. Biochem Biophys Res Commun 292:1155–1166

    Article  CAS  Google Scholar 

  • Rodionov DA, Mironov AA, Gelfand MS (2002) Conservation of the biotin regulon and the BirA regulatory signal in eubacteria and Archaea. Genome Res 12:1507–1516

    Article  CAS  Google Scholar 

  • Satiaputra J, Shearwin KE, Booker GW, Polyak SW (2016) Mechanisms of biotin-regulated gene expression in microbes. Synth Syst Biotechnol 1:17–24

    Article  CAS  Google Scholar 

  • Shapiro MM, Chakravartty V, Cronan JE (2012) Remarkable diversity in the enzymes catalyzing the last step in synthesis of the pimelate moiety of biotin. PLoS One 7(11):e49440. https://doi.org/10.1371/journal.pone.0049440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:139–159

    Article  Google Scholar 

  • Stok JE, De Voss J (2000) Expression, purification, and characterization of BioI: a carbon-carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis. Arch Biochem Biophys 384:351–360

    Article  CAS  Google Scholar 

  • Tong L (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 70:863–891

    Article  CAS  Google Scholar 

  • Zhang H, Luo Q, Gao H, Feng Y (2015) A new regulatory mechanism for bacterial lipoic acid synthesis. Microbiol Open 4:282–300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Dunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dunn, M.F. (2019). Vitamin Formation from Fatty Acid Precursors. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50430-8_24

Download citation

Publish with us

Policies and ethics