Skip to main content

Mycolic Acids: From Chemistry to Biology

  • Reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

Mycolic acids are exceptionally long-chain fatty acids that are major and specific lipid components of the cell envelope of members of the Corynebacteriales order, which includes the causative agents of both tuberculosis and leprosy. These acids participate to the composition of the recently discovered “outer membrane,” a component unexpected for these Gram-positive microorganisms. Many proteins involved in mycolic acid biosynthesis and transport are essential for the mycobacterial survival and represent both validated targets and highly relevant candidates for the development of novel antimycobacterial agents, in the alarming context of multidrug-resistant tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 489.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alahari A, Trivelli X, Guerardel Y, Dover LG, Besra GS, Sacchettini JC, Reynolds RC, Coxon GD, Kremer L (2007) Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria. PLoS One 2:e1343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asselineau C, Asselineau J (1966) Stéréochimie de l’acide corynomycolique. Bull Soc Chim Fr 6:1992–1999

    Google Scholar 

  • Asselineau J, Lederer E (1950) Structure of the mycolic acids of mycobacteria. Nature 166:782–783

    Article  CAS  PubMed  Google Scholar 

  • Asselineau C, Tocanne G, Tocanne JF (1970a) Stéréochimie des acides mycoliques. Bull Soc Chim Fr 4:1455–1459

    Google Scholar 

  • Asselineau CP, Lacave CS, Montrozier HL, Prome JC (1970b) Structural relations between unsaturated mycolic acids and short-chain unsaturated acids synthesized by Mycobacterium phlei. Metabolic implications. Eur J Biochem 14:406–410

    Article  CAS  PubMed  Google Scholar 

  • Asselineau C, Asselineau J, Laneelle G, Laneelle MA (2002) The biosynthesis of mycolic acids by mycobacteria: current and alternative hypotheses. Prog Lipid Res 41:501–523

    Article  CAS  PubMed  Google Scholar 

  • Av-Gay Y, Everett M (2000) The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 8:238–244

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230

    Article  CAS  PubMed  Google Scholar 

  • Bardou F, Quemard A, Dupont MA, Horn C, Marchal G, Daffe M (1996) Effects of isoniazid on ultrastructure of Mycobacterium aurum and Mycobacterium tuberculosis and on production of secreted proteins. Antimicrob Agents Chemother 40:2459–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basso LA, Zheng R, Musser JM, Jacobs WR Jr, Blanchard JS (1998) Mechanisms of isoniazid resistance in Mycobacterium tuberculosis: enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates. J Infect Dis 178:769–775

    Article  CAS  PubMed  Google Scholar 

  • Bazet Lyonnet B, Diacovich L, Cabruja M, Bardou F, Quemard A, Gago G, Gramajo H (2014) Pleiotropic effect of AccD5 and AccE5 depletion in acyl-coenzyme A carboxylase activity and in lipid biosynthesis in mycobacteria. PLoS One 6:e99853

    Article  Google Scholar 

  • Belardinelli JM, Morbidoni HR (2012) Mutations in the essential FAS II beta-hydroxyacyl ACP dehydratase complex confer resistance to thiacetazone in Mycobacterium tuberculosis and Mycobacterium kansasii. Mol Microbiol 86:568–579

    Article  CAS  PubMed  Google Scholar 

  • Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS (1997) Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–1422

    Article  CAS  PubMed  Google Scholar 

  • Bergeret F, Gavalda S, Chalut C, Malaga W, Quemard A, Pedelacq JD, Daffe M, Guilhot C, Mourey L, Bon C (2012) Biochemical and structural study of the atypical acyltransferase domain from the mycobacterial polyketide synthase Pks13. J Biol Chem 287:33675–33690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt A, Kremer L, Dai AZ, Sacchettini JC, Jacobs WR Jr (2005) Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis, leads to mycobacterial cell lysis. J Bacteriol 187:7596–7606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt A, Molle V, Besra GS, Jacobs WR Jr, Kremer L (2007a) The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol Microbiol 64:1442–1454

    Article  CAS  PubMed  Google Scholar 

  • Bhatt A, Fujiwara N, Bhatt K, Gurcha SS, Kremer L, Chen B, Chan J, Porcelli SA, Kobayashi K, Besra GS, Jacobs WR Jr (2007b) Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci U S A 104:5157–5162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt A, Brown AK, Singh A, Minnikin DE, Besra GS (2008) Loss of a mycobacterial gene encoding a reductase leads to an altered cell wall containing beta-oxo-mycolic acid analogs and accumulation of ketones. Chem Biol 15:930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas RK, Dutta D, Tripathi A, Feng Y, Banerjee M, Singh BN (2013) Identification and characterization of Rv0494: a fatty acid-responsive protein of the GntR/FadR family from Mycobacterium tuberculosis. Microbiology 159:913–923

    Article  CAS  PubMed  Google Scholar 

  • Bloch K (1969) Enzymatic synthesis of monounsaturated fatty acids. Acc Chem Res 2:193–202

    Article  CAS  Google Scholar 

  • Bloch K (1977) Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol Relat Areas Mol Biol 45:1–84

    CAS  PubMed  Google Scholar 

  • Bloch K, Vance D (1977) Control mechanisms in the synthesis of saturated fatty acids. Annu Rev Biochem 46:263–298

    Article  CAS  PubMed  Google Scholar 

  • Boehringer D, Ban N, Leibundgut M (2013) 7.5-A cryo-em structure of the mycobacterial fatty acid synthase. J Mol Biol 425:841–849

    Article  CAS  PubMed  Google Scholar 

  • Bordet C, Michel G (1969) Structure and biogenesis of high molecular weight lipids from Nocardia asteroides. Bull Soc Chim Biol (Paris) 51:527–548

    CAS  Google Scholar 

  • Brown JR, North EJ, Hurdle JG, Morisseau C, Scarborough JS, Sun D, Kordulakova J, Scherman MS, Jones V, Grzegorzewicz A, Crew RM, Jackson M, McNeil MR, Lee RE (2011) The structure-activity relationship of urea derivatives as anti-tuberculosis agents. Bioorg Med Chem 19:5585–5595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantaloube S, Veyron-Churlet R, Haddache N, Daffe M, Zerbib D (2011) The Mycobacterium tuberculosis FAS-II dehydratases and methyltransferases define the specificity of the mycolic acid elongation complexes. PLoS One 6:e29564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantrell SA, Leavell MD, Marjanovic O, Iavarone AT, Leary JA, Riley LW (2013) Free mycolic acid accumulation in the cell wall of the mce1 operon mutant strain of Mycobacterium tuberculosis. J Microbiol 51:619–626

    Article  CAS  PubMed  Google Scholar 

  • Carel C, Nukdee K, Cantaloube S, Bonne M, Diagne CT, Laval F, Daffe M, Zerbib D (2014) Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum. PLoS One 9:e97148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrere-Kremer S, Blaise M, Singh VK, Alibaud L, Tuaillon E, Halloum I, van de Weerd R, Guerardel Y, Drancourt M, Takiff H, Geurtsen J, Kremer L (2015) A new dehydratase conferring innate resistance to thiacetazone and intra-amoebal survival of Mycobacterium smegmatis. Mol Microbiol 96:1085–1102

    Article  CAS  PubMed  Google Scholar 

  • Carroll P, Faray-Kele MC, Parish T (2011) Identifying vulnerable pathways in Mycobacterium tuberculosis by using a knockdown approach. Appl Environ Microbiol 77:5040–5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccarelli L, Connell SR, Enderle M, Mills DJ, Vonck J, Grininger M (2013) Structure and conformational variability of the Mycobacterium tuberculosis fatty acid synthase multienzyme complex. Structure 21:1251–1257

    Article  CAS  PubMed  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  • Corrales RM, Molle V, Leiba J, Mourey L, de Chastellier C, Kremer L (2012) Phosphorylation of mycobacterial PcaA inhibits mycolic acid cyclopropanation: consequences for intracellular survival and for phagosome maturation block. J Biol Chem 287:26187–26199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daffé M, Draper P (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203

    Article  PubMed  Google Scholar 

  • Daffé M, Laneelle MA, Asselineau C, Levy-Frebault V, David H (1983) Taxonomic value of mycobacterial fatty acids: proposal for a method of analysis. Ann Microbiol (Paris) 134B:241–256

    Google Scholar 

  • De Sousa-D’Auria C, Kacem R, Puech V, Tropis M, Leblon G, Houssin C, Daffe M (2003) New insights into the biogenesis of the cell envelope of corynebacteria: identification and functional characterization of five new mycoloyltransferase genes in Corynebacterium glutamicum. FEMS Microbiol Lett 224:35–44

    Article  PubMed  CAS  Google Scholar 

  • DeBarber AE, Mdluli K, Bosman M, Bekker LG, Barry CE 3rd (2000) Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 97:9677–9682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dessen A, Quemard A, Blanchard JS, Jacobs WR Jr, Sacchettini JC (1995) Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267:1638–1641

    Article  CAS  PubMed  Google Scholar 

  • Dinadayala P, Laval F, Raynaud C, Lemassu A, Laneelle MA, Laneelle G, Daffe M (2003) Tracking the putative biosynthetic precursors of oxygenated mycolates of Mycobacterium tuberculosis. Structural analysis of fatty acids of a mutant strain deviod of methoxy- and ketomycolates. J Biol Chem 278:7310–7319

    Article  CAS  PubMed  Google Scholar 

  • Douglas JD, Senior SJ, Morehouse C, Phetsukiri B, Campbell IB, Besra GS, Minnikin DE (2002) Analogues of thiolactomycin: potential drugs with enhanced anti-mycobacterial activity. Microbiology 148:3101–3109

    Article  CAS  PubMed  Google Scholar 

  • Dover LG, Alahari A, Gratraud P, Gomes JM, Bhowruth V, Reynolds RC, Besra GS, Kremer L (2007) EthA, a common activator of thiocarbamide-containing drugs acting on different mycobacterial targets. Antimicrob Agents Chemother 51:1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper P (1998) The outer parts of the mycobacterial envelope as permeability barriers. Front Biosci 3:D1253–D1261

    Article  CAS  PubMed  Google Scholar 

  • Dubnau E, Laneelle MA, Soares S, Benichou A, Vaz T, Prome D, Prome JC, Daffe M, Quemard A (1997) Mycobacterium bovis BCG genes involved in the biosynthesis of cyclopropyl keto- and hydroxy-mycolic acids. Mol Microbiol 23:313–322

    Article  CAS  PubMed  Google Scholar 

  • Dubnau E, Marrakchi H, Smith I, Daffe M, Quemard A (1998) Mutations in the cmaB gene are responsible for the absence of methoxymycolic acid in Mycobacterium bovis BCG Pasteur. Mol Microbiol 29:1526–1528

    CAS  PubMed  Google Scholar 

  • Dubnau E, Chan J, Raynaud C, Mohan VP, Laneelle MA, Yu K, Quemard A, Smith I, Daffe M (2000) Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36:630–637

    Article  CAS  PubMed  Google Scholar 

  • Dupont C, Viljoen A, Dubar F, Blaise M, Bernut A, Pawlik A, Bouchier C, Brosch R, Guerardel Y, Lelievre J, Ballell L, Herrmann JL, Biot C, Kremer L (2016) A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus. Mol Microbiol 101:515–529

    Article  CAS  PubMed  Google Scholar 

  • Etemadi AH (1967) Structural and biogenetic correlations of mycolic acids in relation to the phylogenesis of various genera of Actinomycetales. Bull Soc Chim Biol (Paris) 49:695–706

    CAS  Google Scholar 

  • Etemadi AH, Gasche J (1965) On the biogenetic origin of 2-eicosanol and 2-octadecanol of Mycobacterium avium. Bull Soc Chim Biol (Paris) 47:2095–2104

    CAS  Google Scholar 

  • Ferrer NL, Gomez AB, Soto CY, Neyrolles O, Gicquel B, Garcia-Del Portillo F, Martin C (2009) Intracellular replication of attenuated Mycobacterium tuberculosis phoP mutant in the absence of host cell cytotoxicity. Microbes Infect 11:115–122

    Article  CAS  PubMed  Google Scholar 

  • Flipo M, Willand N, Lecat-Guillet N, Hounsou C, Desroses M, Leroux F, Lens Z, Villeret V, Wohlkonig A, Wintjens R, Christophe T, Kyoung Jeon H, Locht C, Brodin P, Baulard AR, Deprez B (2012) Discovery of novel N-phenylphenoxyacetamide derivatives as EthR inhibitors and ethionamide boosters by combining high-throughput screening and synthesis. J Med Chem 55:6391–6402

    Article  CAS  PubMed  Google Scholar 

  • Forrellad MA, McNeil M, Santangelo Mde L, Blanco FC, Garcia E, Klepp LI, Huff J, Niederweis M, Jackson M, Bigi F (2014) Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis. Tuberculosis (Edinb) 94:170–177

    Article  CAS  Google Scholar 

  • Gago G, Kurth D, Diacovich L, Tsai SC, Gramajo H (2006) Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from Mycobacterium tuberculosis. J Bacteriol 188:477–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galandrin S, Guillet V, Rane RS, Leger M, Radha N, Eynard N, Das K, Balganesh TS, Mourey L, Daffe M, Marrakchi H (2013) Assay development for identifying inhibitors of the mycobacterial FadD32 activity. J Biomol Screen 18:576–587

    Article  PubMed  CAS  Google Scholar 

  • Gande R, Gibson KJ, Brown AK, Krumbach K, Dover LG, Sahm H, Shioyama S, Oikawa T, Besra GS, Eggeling L (2004) Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 279:44847–44857

    Article  CAS  PubMed  Google Scholar 

  • Gannoun-Zaki L, Alibaud L, Kremer L (2013) Point mutations within the fatty acid synthase type II dehydratase components HadA or HadC contribute to isoxyl resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 57:629–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao LY, Laval F, Lawson EH, Groger RK, Woodruff A, Morisaki JH, Cox JS, Daffe M, Brown EJ (2003) Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49:1547–1563

    Article  CAS  PubMed  Google Scholar 

  • Gavalda S, Leger M, van der Rest B, Stella A, Bardou F, Montrozier H, Chalut C, Burlet-Schiltz O, Marrakchi H, Daffe M, Quemard A (2009) The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J Biol Chem 284:19255–19264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavalda S, Bardou F, Laval F, Bon C, Malaga W, Chalut C, Guilhot C, Mourey L, Daffe M, Quemard A (2014) The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria. Chem Biol 21:1660–1669

    Article  CAS  PubMed  Google Scholar 

  • Glickman MS (2008) Cording, cord factors, and trehalose dimycolate. In: Daffé M, Reyrat JM (eds) The mycobacterial cell envelope. ASM Press, Washington, DC, pp 63–73

    Chapter  Google Scholar 

  • Glickman MS, Cox JS, Jacobs WR Jr (2000) A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5:717–727

    Article  CAS  PubMed  Google Scholar 

  • Glickman MS, Cahill SM, Jacobs WR (2001) The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase. J Biol Chem 276:2228–2233

    Article  CAS  PubMed  Google Scholar 

  • Goren MB, Brennan PJ (1979) Mycobacterial lipids: chemistry and biological activities. In: Youmans GP (ed) Tuberculosis. The WB Saunders Co, Philadelphia, pp 63–193

    Google Scholar 

  • Greenstein AE, Grundner C, Echols N, Gay LM, Lombana TN, Miecskowski CA, Pullen KE, Sung PY, Alber T (2005) Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis. J Mol Microbiol Biotechnol 9:167–181

    Article  CAS  PubMed  Google Scholar 

  • Grzegorzewicz AE, Pham H, Gundi VA, Scherman MS, North EJ, Hess T, Jones V, Gruppo V, Born SE, Kordulakova J, Chavadi SS, Morisseau C, Lenaerts AJ, Lee RE, McNeil MR, Jackson M (2012a) Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 8:334–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzegorzewicz AE, Kordulakova J, Jones V, Born SE, Belardinelli JM, Vaquie A, Gundi VA, Madacki J, Slama N, Laval F, Vaubourgeix J, Crew RM, Gicquel B, Daffe M, Morbidoni HR, Brennan PJ, Quemard A, McNeil MR, Jackson M (2012b) A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. J Biol Chem 287:38434–38441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzegorzewicz AE, Eynard N, Quemard A, North EJ, Margolis A, Lindenberger JJ, Jones V, Kordulakova J, Brennan PJ, Lee RE, Ronning DR, McNeil MR, Jackson M (2015) Covalent modification of the FAS-II dehydratase by Isoxyl and Thiacetazone. ACS Infect Dis 1:91–97

    Article  CAS  PubMed  Google Scholar 

  • Guillet V, Galandrin S, Maveyraud L, Ladeveze S, Mariaule V, Bon C, Eynard N, Daffe M, Marrakchi H, Mourey L (2016) Insight into structure-function relationships and inhibition of the fatty acyl-AMP ligase (FadD32) orthologs from mycobacteria. J Biol Chem 291:7973–7989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halloum I, Carrere-Kremer S, Blaise M, Viljoen A, Bernut A, Le Moigne V, Vilcheze C, Guerardel Y, Lutfalla G, Herrmann JL, Jacobs WR Jr, Kremer L (2016) Deletion of a dehydratase important for intracellular growth and cording renders rough Mycobacterium abscessus avirulent. Proc Natl Acad Sci U S A 113:E4228–E4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanoulle X, Wieruszeski JM, Rousselot-Pailley P, Landrieu I, Locht C, Lippens G, Baulard AR (2006) Selective intracellular accumulation of the major metabolite issued from the activation of the prodrug ethionamide in mycobacteria. J Antimicrob Chemother 58:768–772

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105:3963–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S, Cheng TY, Layre E, Sweet L, Young DC, Posey JE, Butler WR, Moody DB (2012) Ultralong C100 mycolic acids support the assignment of Segniliparus as a new bacterial genus. PLoS One 7:e39017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter RL, Armitige L, Jagannath C, Actor JK (2009) TB research at UT-Houston – a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis (Edinb) 89:S18–S25

    Article  Google Scholar 

  • Indrigo J, Hunter RL Jr, Actor JK (2002) Influence of trehalose 6,6′-dimycolate (TDM) during mycobacterial infection of bone marrow macrophages. Microbiology 148:1991–1998

    Article  CAS  PubMed  Google Scholar 

  • Indrigo J, Hunter RL Jr, Actor JK (2003) Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149:2049–2059

    Article  CAS  PubMed  Google Scholar 

  • Ioerger TR, O’Malley T, Liao R, Guinn KM, Hickey MJ, Mohaideen N, Murphy KC, Boshoff HI, Mizrahi V, Rubin EJ, Sassetti CM, Barry CE 3rd, Sherman DR, Parish T, Sacchettini JC (2013) Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One 8:e75245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson M, Raynaud C, Laneelle MA, Guilhot C, Laurent-Winter C, Ensergueix D, Gicquel B, Daffe M (1999) Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31:1573–1587

    Article  CAS  PubMed  Google Scholar 

  • Jamet S, Quentin Y, Coudray C, Texier P, Laval F, Daffe M, Fichant G, Cam K (2015a) Evolution of mycolic acid biosynthesis genes and their regulation during starvation in Mycobacterium tuberculosis. J Bacteriol 197:3797–3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamet S, Slama N, Domingues J, Laval F, Texier P, Eynard N, Quemard A, Peixoto A, Lemassu A, Daffe M, Cam K (2015b) The non-essential mycolic acid biosynthesis genes hadA and hadC contribute to the physiology and fitness of Mycobacterium smegmatis. PLoS One 10:e0145883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jarlier V, Nikaido H (1994) Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123:11–18

    Article  CAS  PubMed  Google Scholar 

  • Johnsson K, Shultz PG (1994) Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis. J Am Chem Soc 116:7425–7426

    Article  CAS  Google Scholar 

  • Julian E, Roldan M, Sanchez-Chardi A, Astola O, Agusti G, Luquin M (2010) Microscopic cords, a virulence-related characteristic of Mycobacterium tuberculosis, are also present in nonpathogenic mycobacteria. J Bacteriol 192:1751–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalscheuer R, Weinrick B, Veeraraghavan U, Besra GS, Jacobs WR Jr (2010) Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107:21761–21766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapilashrami K, Bommineni GR, Machutta CA, Kim P, Lai CT, Simmerling C, Picart F, Tonge PJ (2013) Thiolactomycin-based beta-ketoacyl-AcpM synthase A (KasA) inhibitors: fragment-based inhibitor discovery using transient one-dimensional nuclear overhauser effect NMR spectroscopy. J Biol Chem 288:6045–6052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kordulakova J, Janin YL, Liav A, Barilone N, Dos Vultos T, Rauzier J, Brennan PJ, Gicquel B, Jackson M (2007) Isoxyl activation is required for bacteriostatic activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 51:3824–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer L, Douglas JD, Baulard AR, Morehouse C, Guy MR, Alland D, Dover LG, Lakey JH, Jacobs WR Jr, Brennan PJ, Minnikin DE, Besra GS (2000) Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J Biol Chem 275:16857–16864

    Article  CAS  PubMed  Google Scholar 

  • Kremer L, Dover LG, Carrere S, Nampoothiri KM, Lesjean S, Brown AK, Brennan PJ, Minnikin DE, Locht C, Besra GS (2002) Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochem J 364:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer L, Dover LG, Morbidoni HR, Vilcheze C, Maughan WN, Baulard A, Tu SC, Honore N, Deretic V, Sacchettini JC, Locht C, Jacobs WR Jr, Besra GS (2003) Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria. J Biol Chem 278:20547–22055

    Article  CAS  PubMed  Google Scholar 

  • La Rosa V, Poce G, Canseco JO, Buroni S, Pasca MR, Biava M, Raju RM, Porretta GC, Alfonso S, Battilocchio C, Javid B, Sorrentino F, Ioerger TR, Sacchettini JC, Manetti F, Botta M, De Logu A, Rubin EJ, De Rossi E (2012) MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212. Antimicrob Agents Chemother 56:324–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laneelle MA, Laneelle G (1970) Structure of mycolic acids and an intermediate in the biosynthesis of dicarboxylic mycolic acids. Eur J Biochem 12:296–300

    Article  CAS  PubMed  Google Scholar 

  • Laneelle MA, Launay A, Spina L, Marrakchi H, Laval F, Eynard N, Lemassu A, Tropis M, Daffe M, Etienne G (2012) A novel mycolic acid species defines two novel genera of the Actinobacteria, Hoyosella and Amycolicicoccus. Microbiology 158:843–855

    Article  CAS  PubMed  Google Scholar 

  • Laneelle MA, Eynard N, Spina L, Lemassu A, Laval F, Huc E, Etienne G, Marrakchi H, Daffe M (2013) Structural elucidation and genomic scrutiny of the C60–C100 mycolic acids of Segniliparus rotundus. Microbiology 159:191–203

    Article  CAS  PubMed  Google Scholar 

  • Laneelle MA, Nigou J, Daffe M (2015) Lipid and lipoarabinomannan isolation and characterization. Methods Mol Biol 1285:77–103

    Article  CAS  PubMed  Google Scholar 

  • Laval F, Laneelle MA, Deon C, Monsarrat B, Daffe M (2001) Accurate molecular mass determination of mycolic acids by MALDI-TOF mass spectrometry. Anal Chem 73:4537–4544

    Article  CAS  PubMed  Google Scholar 

  • Laval F, Haites R, Movahedzadeh F, Lemassu A, Wong CY, Stoker N, Billman-Jacobe H, Daffe M (2008) Investigating the function of the putative mycolic acid methyltransferase UmaA: divergence between the Mycobacterium smegmatis and Mycobacterium tuberculosis proteins. J Biol Chem 283:1419–1427

    Article  CAS  PubMed  Google Scholar 

  • Layre E, Collmann A, Bastian M, Mariotti S, Czaplicki J, Prandi J, Mori L, Stenger S, De Libero G, Puzo G, Gilleron M (2009) Mycolic acids constitute a scaffold for mycobacterial lipid antigens stimulating CD1-restricted T cells. Chem Biol 16:82–92

    Article  CAS  PubMed  Google Scholar 

  • Le NH, Molle V, Eynard N, Miras M, Stella A, Bardou F, Galandrin S, Guillet V, Andre-Leroux G, Bellinzoni M, Alzari P, Mourey L, Burlet-Schiltz O, Daffe M, Marrakchi H (2016) Ser/Thr phosphorylation regulates the Fatty Acyl-AMP Ligase activity of FadD32, an essential enzyme in mycolic acid biosynthesis. J Biol Chem 291:22793–22805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lea-Smith DJ, Pyke JS, Tull D, McConville MJ, Coppel RL, Crellin PK (2007) The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan. J Biol Chem 282:11000–11008

    Article  CAS  PubMed  Google Scholar 

  • Lederer E (1969) Some problems concerning biological C-alkylation reactions and phytosterol biosynthesis. Q Rev Chem Soc 23:453–481

    Article  CAS  Google Scholar 

  • Leger M, Gavalda S, Guillet V, van der Rest B, Slama N, Montrozier H, Mourey L, Quemard A, Daffe M, Marrakchi H (2009) The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis. Chem Biol 16:510–519

    Article  CAS  PubMed  Google Scholar 

  • Li W, Upadhyay A, Fontes FL, North EJ, Wang Y, Crans DC, Grzegorzewicz AE, Jones V, Franzblau SG, Lee RE, Crick DC, Jackson M (2014) Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:6413–6423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Gu S, Fleming J, Bi L (2015) Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria. Sci Rep 5:15493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Obregon-Henao A, Wallach JB, North EJ, Lee RE, Gonzalez-Juarrero M, Schnappinger D, Jackson M (2016) Therapeutic potential of the Mycobacterium tuberculosis mycolic acid transporter, MmpL3. Antimicrob Agents Chemother 60:5198–5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Barry CE 3rd, Besra GS, Nikaido H (1996) Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271:29545–29551

    Article  CAS  PubMed  Google Scholar 

  • Mann KM, Pride A, Flentie K, Kimmey J, Weiss L, Stallings C (2016) Analysis of the contribution of MTP and the predicted Flp pilus genes to Mycobacterium tuberculosis pathogenesis. Microbiology 162:1784–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchand CH, Salmeron C, Bou Raad R, Meniche X, Chami M, Masi M, Blanot D, Daffe M, Tropis M, Huc E, Le Marechal P, Decottignies P, Bayan N (2012) Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum. J Bacteriol 194:587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrakchi H, Laneelle G, Quemard A (2000) InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 146:289–296

    Article  CAS  PubMed  Google Scholar 

  • Marrakchi H, Choi KH, Rock CO (2002) A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem 277:44809–44816

    Article  CAS  PubMed  Google Scholar 

  • Marrakchi H, Laneelle MA, Daffe M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21:67–85

    Article  CAS  PubMed  Google Scholar 

  • Mdluli K, Sherman DR, Hickey MJ, Kreiswirth BN, Morris S, Stover CK, Barry CE 3rd (1996) Biochemical and genetic data suggest that InhA is not the primary target for activated isoniazid in Mycobacterium tuberculosis. J Infect Dis 174:1085–1090

    Article  CAS  PubMed  Google Scholar 

  • Mitchison DA (1998) Basic concepts in the chemotherapy of tuberculosis. In: Gangadharam PRJ, Jenkins PA (ed) Mycobacteria: II chemotherapy. Chapman & Hall Medical Microbiology Series, Springer US, pp 15–43

    Chapter  Google Scholar 

  • Molle V, Kremer L (2010) Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol Microbiol 75:1064–1077

    Article  CAS  PubMed  Google Scholar 

  • Mondino S, Gago G, Gramajo H (2013) Transcriptional regulation of fatty acid biosynthesis in mycobacteria. Mol Microbiol 89:372–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moody DB, Reinhold BB, Guy MR, Beckman EM, Frederique DE, Furlong ST, Ye S, Reinhold VN, Sieling PA, Modlin RL, Besra GS, Porcelli SA (1997) Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278:283–286

    Article  CAS  PubMed  Google Scholar 

  • Moody DB, Guy MR, Grant E, Cheng TY, Brenner MB, Besra GS, Porcelli SA (2000) CD1b-mediated T cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection. J Exp Med 192:965–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikiforov PO, Surade S, et al (2016) A fragment merging approach towards the development of small molecule inhibitors of Mycobacterium tuberculosis EthR for use as ethionamide boosters. Org Biomol Chem 14(7):2318–2326

    Article  CAS  Google Scholar 

  • North EJ, Jackson M, Lee RE (2014) New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr Pharm Des 20:4357–4378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odriozola JM, Ramos JA, Bloch K (1977) Fatty acid synthetase activity in Mycobacterium smegmatis. Characterization of the acyl carrier protein-dependent elongating system. Biochim Biophys Acta 488:207–217

    Article  CAS  PubMed  Google Scholar 

  • Oh TJ, Daniel J, Kim HJ, Sirakova TD, Kolattukudy PE (2006) Identification and characterization of Rv3281 as a novel subunit of a biotin-dependent acyl-CoA Carboxylase in Mycobacterium tuberculosis H37Rv. J Biol Chem 281:3899–3908

    Article  CAS  PubMed  Google Scholar 

  • Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873

    Article  CAS  PubMed  Google Scholar 

  • Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR Jr, Hatfull GF (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69:164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojha AK, Trivelli X, Guerardel Y, Kremer L, Hatfull GF (2010) Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J Biol Chem 285:17380–17389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco SA, Hsu FF, Powers KM, Purdy GE (2013) MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in Mycobacterium smegmatis. J Biol Chem 288:24213–24222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parish T, Roberts G, Laval F, Schaeffer M, Daffe M, Duncan K (2007) Functional complementation of the essential gene fabG1 of Mycobacterium tuberculosis by Mycobacterium smegmatis fabG, but not Escherichia coli fabG. J Bacteriol 189:3721–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne K, Sun Q, Sacchettini J, Hatfull GF (2009) Mycobacteriophage Lysin B is a novel mycolylarabinogalactan esterase. Mol Microbiol 73:367–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, Daffe M, Emile JF, Marchou B, Cardona PJ, de Chastellier C, Altare F (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4:e1000204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phetsuksiri B, Jackson M, Scherman H, McNeil M, Besra GS, Baulard AR, Slayden RA, DeBarber AE, Barry CE 3rd, Baird MS, Crick DC, Brennan PJ (2003) Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis. J Biol Chem 278:53123–53130

    Article  CAS  PubMed  Google Scholar 

  • Portevin D, De Sousa-D’Auria C, Houssin C, Grimaldi C, Chami M, Daffe M, Guilhot C (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci U S A 101:314–319

    Article  CAS  PubMed  Google Scholar 

  • Portevin D, de Sousa-D’Auria C, Montrozier H, Houssin C, Stella A, Laneelle MA, Bardou F, Guilhot C, Daffe M (2005) The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem 280:8862–8874

    Article  CAS  PubMed  Google Scholar 

  • Puech V, Guilhot C, Perez E, Tropis M, Armitige LY, Gicquel B, Daffe M (2002) Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis. Mol Microbiol 44:1109–1122

    Article  CAS  PubMed  Google Scholar 

  • Purwantini E, Mukhopadhyay B (2013) Rv0132c of Mycobacterium tuberculosis encodes a coenzyme F420-dependent hydroxymycolic acid dehydrogenase. PLoS One 8:e81985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Queiroz A, Medina-Cleghorn D, Marjanovic O, Nomura DK, Riley LW (2015) Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains. Pathog Dis 73:ftv066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quemard A (2016) New insights into the mycolate-containing compound biosynthesis and transport in mycobacteria. Trends Microbiol 24:725–738

    Article  CAS  PubMed  Google Scholar 

  • Quemard A, Lacave C, Laneelle G (1991) Isoniazid inhibition of mycolic acid synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrob Agents Chemother 35:1035–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quemard A, Sacchettini JC, Dessen A, Vilcheze C, Bittman R, Jacobs WR Jr, Blanchard JS (1995) Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry (Mosc) 34:8235–8241

    Article  CAS  Google Scholar 

  • Quémard A, Dessen A, Sugantino M, Jacobs WR Jr, Sacchettini JC, Blanchard JS (1996) Binding of catalase-peroxidase-activated isoniazid to wild-type and mutant Mycobacterium tuberculosis enoyl-ACP reductases. J Am Chem Soc 118:1561–1562

    Article  Google Scholar 

  • Qureshi N, Sathyamoorthy N, Takayama K (1984) Biosynthesis of C30 to C56 fatty acids by an extract of Mycobacterium tuberculosis H37Ra. J Bacteriol 157:46–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rafidinarivo E, Prome JC, Levy-Frebault V (1985) New kinds of unsaturated mycolic acids from Mycobacterium fallax sp. nov. Chem Phys Lipids 36:215–228

    Article  CAS  Google Scholar 

  • Ramesh R, Shingare RD, Kumar V, Anand ABS, Veeraraghavan S, Viswanadha S, Ummanni R, Gokhale R, Srinivasa Reddy D (2016) Repurposing of a drug scaffold: identification of novel sila analogues of rimonabant as potent antitubercular agents. Eur J Med Chem 122:723–730

    Article  CAS  PubMed  Google Scholar 

  • Rao V, Gao F, Chen B, Jacobs WR Jr, Glickman MS (2006) Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis -induced inflammation and virulence. J Clin Invest 116:1660–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehm HJ, Reiff I (1981) Mechanisms and occurence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19:175–215

    CAS  Google Scholar 

  • Rock CO, Cronan JE (1996) Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochim Biophys Acta 1302:1–16

    Article  PubMed  Google Scholar 

  • Rombouts Y, Brust B, Ojha AK, Maes E, Coddeville B, Elass-Rochard E, Kremer L, Guerardel Y (2012) Exposure of mycobacteria to cell wall-inhibitory drugs decreases production of arabinoglycerolipid related to Mycolyl-arabinogalactan-peptidoglycan metabolism. J Biol Chem 287:11060–11069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozwarski DA, Grant GA, Barton DH, Jacobs WR Jr, Sacchettini JC (1998) Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279:98–102

    Article  CAS  PubMed  Google Scholar 

  • Sacco E, Covarrubias AS, O’Hare HM, Carroll P, Eynard N, Jones TA, Parish T, Daffe M, Backbro K, Quemard A (2007) The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 104:14628–14633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzman V, Mondino S, Sala C, Cole ST, Gago G, Gramajo H (2010) Transcriptional regulation of lipid homeostasis in mycobacteria. Mol Microbiol 78:64–77

    CAS  PubMed  Google Scholar 

  • Sambandan D, Dao DN, Weinrick BC, Vilcheze C, Gurcha SS, Ojha A, Kremer L, Besra GS, Hatfull GF, Jacobs WR Jr (2013) Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. MBio 4:e00222–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sani M, Houben EN, Geurtsen J, Pierson J, de Punder K, van Zon M, Wever B, Piersma SR, Jimenez CR, Daffe M, Appelmelk BJ, Bitter W, van der Wel N, Peters PJ (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6:e1000794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaeffer ML, Agnihotri G, Volker C, Kallender H, Brennan PJ, Lonsdale JT (2001) Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem 276:47029–47037

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Varela C, Bhatt K, Veerapen N, Lee OY, Wu HH, Besra GS, Minnikin DE, Fujiwara N, Teramoto K, Bhatt A (2016) Identification of a desaturase involved in mycolic acid biosynthesis in Mycobacterium smegmatis. PLoS One 11:e0164253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sinha BK (1983) Enzymatic activation of hydrazine derivatives. A spin-trapping study. J Biol Chem 258:796–801

    CAS  PubMed  Google Scholar 

  • Slama N, Leiba J, Eynard N, Daffe M, Kremer L, Quemard A, Molle V (2011) Negative regulation by Ser/Thr phosphorylation of HadAB and HadBC dehydratases from Mycobacterium tuberculosis type II fatty acid synthase system. Biochem Biophys Res Commun 412:401–406

    Article  CAS  PubMed  Google Scholar 

  • Slama N, Jamet S, Frigui W, Pawlik A, Bottai D, Laval F, Constant P, Lemassu A, Cam K, Daffe M, Brosch R, Eynard N, Quemard A (2016) The changes in mycolic acid structures caused by hadC mutation have a dramatic effect on the virulence of Mycobacterium tuberculosis. Mol Microbiol 99:794–807

    Article  CAS  PubMed  Google Scholar 

  • Stanley SA, Kawate T, Iwase N, Shimizu M, Clatworthy AE, Kazyanskaya E, Sacchettini JC, Ioerger TR, Siddiqi NA, Minami S, Aquadro JA, Schmidt Grant S, Rubin EJ, Hung DT (2013) Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32. Proc Natl Acad Sci U S A 110:11565–11570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stec J, Onajole OK, Lun S, Guo H, Merenbloom B, Vistoli G, Bishai WR, Kozikowski AP (2016) Indole-2-carboxamide-based MmpL3 inhibitors show exceptional antitubercular activity in an animal model of tuberculosis infection. J Med Chem 59:6232–6247

    Article  CAS  PubMed  Google Scholar 

  • Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, Fischer E, Barnes SW, Walker JR, Alland D, Barry CE 3rd, Boshoff HI (2012) SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:1797–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama K, Qureshi N (1978) Isolation and characterization of the monounsaturated long chain fatty acids of Mycobacterium tuberculosis. Lipids 13:575–579

    Article  CAS  PubMed  Google Scholar 

  • Takayama K, Wang L, David HL (1972) Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2:29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Deng W, Xie J (2012) Novel insights into Mycobacterium antigen Ag85 biology and implications in countermeasures for M. tuberculosis. Crit Rev Eukaryot Gene Expr 22:179–187

    Article  PubMed  Google Scholar 

  • Tarnok I, Rohrscheidt E (1976) Biochemical background of some enzymatic tests used for the differentiation of mycobacteria. Tubercle 57:145–150

    Article  CAS  PubMed  Google Scholar 

  • Tomiyasu I, Yano I (1984) Separation and analysis of novel polyunsaturated mycolic acids from a psychrophilic, acid-fast bacterium, Gordona aurantiaca. Eur J Biochem 139:173–180

    Article  CAS  PubMed  Google Scholar 

  • Toriyama S, Izaizumi S, Tomiyasu I, Masui M, Yano I (1982) Incorporation of 18O into long-chain secondary alkohols derived from ester mycolic acids in Mycobacterium phlei. Biochim Biophys Acta 712:427–429

    Article  CAS  Google Scholar 

  • Trivedi OA, Arora P, Sridharan V, Tickoo R, Mohanty D, Gokhale RS (2004) Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428:441–445

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Casali N, White A, Morici L, Kendall LV, Riley LW (2007) Accelerated immunopathological response of mice infected with Mycobacterium tuberculosis disrupted in the mce1 operon negative transcriptional regulator. Cell Microbiol 9:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Vander Beken S, Al Dulayymi JR, et al (2011) Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. Eur J Immunol 41(2):450–460

    Article  PubMed  CAS  Google Scholar 

  • Varela C, Rittmann D, Singh A, Krumbach K, Bhatt K, Eggeling L, Besra GS, Bhatt A (2012) MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem Biol 19:498–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergne I, Daffe M (1998) Interaction of mycobacterial glycolipids with host cells. Front Biosci 3:d865–d876

    Article  CAS  PubMed  Google Scholar 

  • Verschoor JA, Baird MS, Grooten J (2012) Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog Lipid Res 51:325–339

    Article  CAS  PubMed  Google Scholar 

  • Veyron-Churlet R, Guerrini O, Mourey L, Daffe M, Zerbib D (2004) Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability. Mol Microbiol 54:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Veyron-Churlet R, Bigot S, Guerrini O, Verdoux S, Malaga W, Daffe M, Zerbib D (2005) The biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple specialized elongation complexes interconnected by specific protein-protein interactions. J Mol Biol 353:847–858

    Article  CAS  PubMed  Google Scholar 

  • Vilcheze C, Morbidoni HR, Weisbrod TR, Iwamoto H, Kuo M, Sacchettini JC, Jacobs WR Jr (2000) Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J Bacteriol 182:4059–4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilcheze C, Molle V, Carrere-Kremer S, Leiba J, Mourey L, Shenai S, Baronian G, Tufariello J, Hartman T, Veyron-Churlet R, Trivelli X, Tiwari S, Weinrick B, Alland D, Guerardel Y, Jacobs WR Jr, Kremer L (2014) Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis. PLoS Pathog 10:e1004115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villeneuve M, Kawai M, Kanashima H, Watanabe M, Minnikin DE, Nakahara H (2005) Temperature dependence of the Langmuir monolayer packing of mycolic acids from Mycobacterium tuberculosis. Biochim Biophys Acta 1715:71–80

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve M, Kawai M, Watanabe M, Aoyagi Y, Hitotsuyanagi Y, Takeya K, Gouda H, Hirono S, Minnikin DE, Nakahara H (2007) Conformational behavior of oxygenated mycobacterial mycolic acids from Mycobacterium bovis BCG. Biochim Biophys Acta 1768:1717–1726

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve M, Kawai M, Horiuchi K, Watanabe M, Aoyagi Y, Hitotsuyanagi Y, Takeya K, Gouda H, Hirono S, Minnikin DE (2013) Conformational folding of mycobacterial methoxy- and ketomycolic acids facilitated by alpha-methyl trans-cyclopropane groups rather than cis-cyclopropane units. Microbiology 159:2405–2415

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Langley R, Gulten G, Dover LG, Besra GS, Jacobs WR Jr, Sacchettini JC (2007) Mechanism of thioamide drug action against tuberculosis and leprosy. J Exp Med 204:73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XM, Lu C, Soetaert K, S’Heeren C, Peirs P, Laneelle MA, Lefevre P, Bifani P, Content J, Daffe M, Huygen K, De Bruyn J, Wattiez R (2011) Biochemical and immunological characterization of a cpn60.1 knockout mutant of Mycobacterium bovis BCG. Microbiology 157:1205–1219

    Article  CAS  PubMed  Google Scholar 

  • Warrier T, Tropis M, Werngren J, Diehl A, Gengenbacher M, Schlegel B, Schade M, Oschkinat H, Daffe M, Hoffner S, Eddine AN, Kaufmann SH (2012) Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis. Antimicrob Agents Chemother 56:1735–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Aoyagi Y, Ridell M, Minnikin DE (2001) Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 147:1825–1837

    Article  CAS  PubMed  Google Scholar 

  • Wehenkel A, Bellinzoni M, Grana M, Duran R, Villarino A, Fernandez P, Andre-Leroux G, England P, Takiff H, Cervenansky C, Cole ST, Alzari PM (2008) Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim Biophys Acta 1784:193–202

    Article  CAS  PubMed  Google Scholar 

  • Wilson R, Kumar P, Parashar V, Vilcheze C, Veyron-Churlet R, Freundlich JS, Barnes SW, Walker JR, Szymonifka MJ, Marchiano E, Shenai S, Colangeli R, Jacobs WR Jr, Neiditch MB, Kremer L, Alland D (2013) Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat Chem Biol 9:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winder FG (1982) Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of the mycobacteria. In: Ratledge C, Stanford J (eds) The biology of the mycobacteria. Academic, London, pp 354–438

    Google Scholar 

  • Wong MY, Gray GR (1979) Structures of the homologous series of monoalkene mycolic acids from Mycobacterium smegmatis. J Biol Chem 254:5741–5744

    CAS  PubMed  Google Scholar 

  • Yuan Y, Barry CE (1996) A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 93:12828–12833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Mead D, Schroeder BG, Zhu Y, Barry CE 3rd (1998) The biosynthesis of mycolic acids in Mycobacterium tuberculosis. Enzymatic methyl(ene) transfer to acyl carrier protein bound meromycolic acid in vitro. J Biol Chem 273:21282–21290

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593

    Article  CAS  PubMed  Google Scholar 

  • Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffe M (2008) Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to their colleagues for fruitful collaborations and discussions, and for sharing unpublished material. We acknowledge funding from the European Union (NM4TB, grant LSHP-CT-2005-018923; TB-Drug grant LSHP-CT-2006-037217; SysteMTb HEALTH-2009-2.1.2-1 241587), the Agence Nationale de la Recherche (XPKS-MYCO, grant 09-BLAN-0298-03; FASMY, grant ANR-14-CE16-0012), the Région Midi-Pyrénées (MYCA, FEDER grant 34249), the France-Argentina ECOS-MINCyT cooperation program (grant A11B04) and the “Vaincre la Mucoviscidose” association (IC0716, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou Daffé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Daffé, M., Quémard, A., Marrakchi, H. (2019). Mycolic Acids: From Chemistry to Biology. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50430-8_18

Download citation

Publish with us

Policies and ethics