Skip to main content

Adhesives with Nanoparticles

  • Living reference work entry
  • First Online:
Handbook of Adhesion Technology
  • 352 Accesses

Abstract

The increased commercial availability and the reduced prices of nanoparticles are leading to their incorporation in polymers and structural adhesives. This chapter outlines the principal types of nanoparticles, and the methods that may be used to disperse the particles in a polymer matrix. It discusses how nanoparticles can alter the mechanical properties (e.g., stiffness), electrical properties (e.g., conductivity), functional properties (e.g., permeability, glass transition temperature), and fracture performance of thermoset polymers. The effect of nanoparticles on joint performance is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed S, Jones FR (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci 25:4933

    Google Scholar 

  • Ajayan PM, Stephan O et al (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212

    Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1

    Google Scholar 

  • Azimi HR, Pearson RA et al (1996a) Fatigue of hybrid epoxy composites: Epoxies containing rubber and hollow glass spheres. Polym Eng Sci 36:2352

    Google Scholar 

  • Azimi HR, Pearson RA et al (1996b) Fatigue of rubber-modified epoxies: effect of particle size and volume fraction. J Mater Sci 31:3777

    Google Scholar 

  • Baik Y, Lee S et al (2005) Unidirectional alignment of carbon nano-sized fiber using drawing process. J Mater Sci 40:6037

    Google Scholar 

  • Bechelany M, Brioude A et al (2007) Large-scale preparation of faceted Si 3N 4 nanorods from beta-SiC nanowires. Nanotechnology 18:335305

    Google Scholar 

  • Becker O, Simon GP (2006) Epoxy nanocomposites based on layered silicates and other nanostructured fillers. In: Mai YW, Yu ZZ (eds) Polymer nanocomposites. Woodhead, Cambridge, p 594

    Google Scholar 

  • Beyer G (2002) Carbon nanotubes as flame retardants for polymers. Fire Mater 26:291

    Google Scholar 

  • Blackman BRK, Kinloch AJ et al (2007) The fracture and fatigue behaviour of nano-modified epoxy polymers. J Mater Sci 42:7049

    Google Scholar 

  • Brnardic I, Macan J et al (2008) Thermal degradation kinetics of epoxy/organically modified montmorillonite nanocomposites. J Appl Polym Sci 107:1932

    Google Scholar 

  • Brooker RD, Blackman BRK et al (2008) Nano-reinforcement of epoxy/thermoplastic blends. In: 31st annual meeting of the adhesion society, Austin, USA, Adhesion Society, Blacksburg, USA

    Google Scholar 

  • Brooker RD, Kinloch AJ et al (2010) The morphology and fracture properties of thermoplastic-toughened epoxy polymers. J Adhes 86:726

    Google Scholar 

  • Brown DM, Kinloch IA et al (2007) An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 45:1743

    Google Scholar 

  • Bugnicourt E, Galy J et al (2007) Effect of sub-micron silica fillers on the mechanical performances of epoxy-based composites. Polymer 48:1596

    Google Scholar 

  • Cao Y, Irwin PC et al (2004) The future of nanodielectrics in the electrical power industry. IEEE Trans Dielectric Electrical Insul 11:797

    Google Scholar 

  • Chakrabarti S, Nagasaka T et al (2006) Growth of super long aligned brush-like carbon nanotubes. Jpn J Appl Phys Expr Lett 45:L720

    Google Scholar 

  • Chandradass J, Bae D-S (2008) Preparation and properties of barium titanate nanopowder/epoxy composites. Mater Manuf Process 23:116

    Google Scholar 

  • CheapTubes (2009.) http://www.cheaptubes.com. Retrieved 4 Nov 2009

  • Chen C, Curliss D (2001) Resin matrix composites: organoclay-aerospace epoxy nanocomposites, Part II. SAMPE J 37:11

    Google Scholar 

  • Chen TK, Jan YH (1992) Fracture mechanism of toughened epoxy-resin with bimodal rubber-particle size distribution. J Mater Sci 27:111

    Google Scholar 

  • Chen XQ, Saito T et al (2001) Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl Phys Lett 78:3714

    Google Scholar 

  • Demczyk BG, Wang YM et al (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173

    Google Scholar 

  • Dodiuk H, Belinski I et al (2006) Polyurethane adhesives containing functionalized nanoclays. J Adhes Sci Technol 20:1345

    Google Scholar 

  • Dompas D, Groeninckx G (1994) Toughening behavior of rubber-modified thermoplastic polymers involving very small rubber particles. 1. A criterion for internal rubber cavitation. Polymer 35:4743

    Google Scholar 

  • Feynman RP (1959) .There’s plenty of room at the bottom – an invitation to enter a new field of physics http://www.;zyvex.com/nanotech/feynman.html. Accessed 9 Apr 2008

  • Fiedler B, Gojny FH et al (2006) Fundamental aspects of nano-reinforced composites. Compos Sci Technol 66:3115

    Google Scholar 

  • Gilbert EN, Hayes BS et al (2003) Nano-alumina modified epoxy based film adhesives. Polym Eng Sci 43:1096

    Google Scholar 

  • Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15:31

    Google Scholar 

  • Gilman JW, Harris RH et al (1999b) Cyanate ester clay nanocomposites: synthesis and flammability studies. In: Evolving and revolutionary technologies for the new millennium 44th international SAMPE symposium/exhibition, Long beach, CA, USA, Society for the Advancement of Material and Process Engineering (SAMPE)

    Google Scholar 

  • Gilman JW, Kashiwagi T et al (1999a) Flammability studies of polymer layered silicate nanocomposites: polyolefin, epoxy and vinyl ester resins. In: Ak-Malaika S, Golovoy A et al (eds) Chemistry and technology of polymer additives. Blackwell Science, Malden, p 249

    Google Scholar 

  • Gilman JW, Harris RH et al (2000b) Phenolic cyanate ester nanocomposites: effect of ammonium ion structure on flammability and nano-dispersion. In: Spring meeting, division of polymeric materials: science and engineering, American Chemical Society, San Francisco, USA, American Chemical Society

    Google Scholar 

  • Gilman JW, Jackson CL et al (2000a) Flammability properties of polymer-layered-silicate nanocomposites. polypropylene and polystyrene. Nanocomposites Chem Mater 12:1866

    Google Scholar 

  • Gintert MJ, Jana SC et al (2007) A novel strategy for nanoclay exfoliation in thermoset polyimide nanocomposite systems. Polymer 48:4166

    Google Scholar 

  • Gojny FH, Nastalczyk J et al (2003) Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett 370:820

    Google Scholar 

  • Gojny FH, Wichmann MHG et al (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64:2363

    Google Scholar 

  • Gojny FH, Wichmann MHG et al (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47:2036

    Google Scholar 

  • Gordon JE (1978) The new science of strong materials or why you don’t fall through the floor. Penguin, Harmondsworth

    Google Scholar 

  • Green K, Dean D et al (2006) Aligned carbon nanofiber/epoxy nanocomposites. Polym Mater Sci Eng 94:53

    Google Scholar 

  • Gusev AA, Lusti HR (2001) Rational design of nanocomposites for barrier applications. Adv Mater 13:1641

    Google Scholar 

  • Hackman I, Hollaway L (2006) Epoxy-layered silicate nanocomposites in civil engineering. Composites Pt A 37:1161

    Google Scholar 

  • Harper T (2003) What is nanotechnology? Nanotechnology 14:U5

    Google Scholar 

  • Harris PJF (1999) Carbon nanotubes and related structures: new materials for the twenty-first century. Cambridge University Press, Cambridge

    Google Scholar 

  • Harris PJF (2009) Carbon nanotube science: synthesis, properties and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Hay J, Shaw S (2001) Into the Labyrinth. Chem Br 2001:34

    Google Scholar 

  • Hsiao K-T, Alms J et al (2003) Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 14:791

    Google Scholar 

  • Hsieh TH, Kinloch AJ et al (2010) The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater Sci 45:1193

    Google Scholar 

  • ICBA (2008) .International Carbon Black Association, http://www.carbon-black.;org. Retrieved 9 Apr 2008

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603

    Google Scholar 

  • Imai T, Sawa F et al (2006) Effects of nano- and micro-filler mixture on electrical insulation properties of epoxy based composites. IEEE Trans Dielectric Electrical Insul 13:319

    Google Scholar 

  • Johnsen BB, Kinloch AJ et al (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530

    Google Scholar 

  • Kaneka (2008.) http://www.kaneka.com. Retrieved 9 Apr 2008

  • Karger-Kocsis J, Friedrich K (1992) Fatigue crack-propagation and related failure in modified, anhydride-cured epoxy-resins. Colloid Polym Sci 270:549

    Google Scholar 

  • Karger-Kocsis J, Gryshchuk O et al (2003) Interpenetrating vinylester/epoxy resins modified with organophilic layered silicates. Compos Sci Technol 63:2045

    Google Scholar 

  • Kathi J, Rhee K (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33

    Google Scholar 

  • Kawaguchi T, Pearson RA (2003) The effect of particle-matrix adhesion on the mechanical behavior of glass filled epoxies. Part 2. A study on fracture toughness. Polymer 44:4239

    Google Scholar 

  • Kinloch AJ, Lee JH et al (2003) Toughening structural adhesives via nano- and micro-phase inclusions. J Adhes 79:867

    Google Scholar 

  • Kinloch AJ, Maxwell DL et al (1985) The fracture of hybrid-particulate composites. J Mater Sci 20:4169

    Google Scholar 

  • Kinloch AJ, Mohammed RD et al (2005) The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J Mater Sci 40:5083

    Google Scholar 

  • Kinloch AJ, Taylor AC (2002) The toughening of cyanate-ester polymers. Part I: physical modification using particles, fibres and woven-mats. J Mater Sci 37:433

    Google Scholar 

  • Kinloch AJ, Taylor AC (2003) Mechanical and fracture properties of epoxy/inorganic micro- and nano-composites. J Mater Sci Lett 22:1439

    Google Scholar 

  • Kinloch AJ, Taylor AC (2006) The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. J Mater Sci 41:3271

    Google Scholar 

  • Kody RS, Lesser AJ (1999) Yield behavior and energy absorbing characteristics of rubber-modified epoxies subjected to biaxial stress states. Polym Compos 20:250

    Google Scholar 

  • Koerner H, Hampton E et al (2005) Generating triaxial reinforced epoxy/montmorillonite nanocomposites with uniaxial magnetic fields. Chem Mater 17:1990

    Google Scholar 

  • Kornmann X (1999) Synthesis and characterisation of thermoset-clay nanocomoposites. Licentiate thesis, materials and manufacturing engineering department, University of Lulea, Lulea, Sweden

    Google Scholar 

  • Lam C-W, James JT et al (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126

    Google Scholar 

  • Lam C-K, Lau K-T et al (2005) Effect of ultrasound sonication in nanoclay clusters of nanoclay/epoxy composites. Mater Lett 59:1369

    Google Scholar 

  • Lau K-T, Gu C et al (2004) Stretching process of single- and multi-walled carbon nanotubes for nanocomposite applications. Carbon 42:426

    Google Scholar 

  • Lazzeri A, Bucknall CB (1993) Dilatational bands in rubber-toughened polymers. J Mater Sci 28:6799

    Google Scholar 

  • Liang G, Hu X (2004) Preparation and performance of aluminum borate whisker-reinforced epoxy composites. I. Effect of whiskers on processing, reactivity, and mechanical properties. J Appl Polym Sci 92:1950–1954

    Google Scholar 

  • Liang YL, Pearson RA (2009) Toughening mechanisms in epoxy-silica nanocomposites (ESNs). Polymer 50:4895

    Google Scholar 

  • Liu WP, Hoa SV et al (2004) Morphology and performance of epoxy nanocomposites modified with organoclay and rubber. Polym Eng Sci 44:1178

    Google Scholar 

  • Lu KL, Lago RM et al (1996) Mechanical damage of carbon nanotubes by ultrasound. Carbon 34:814

    Google Scholar 

  • Martin CA, Sandler JKW et al (2005) Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46:877

    Google Scholar 

  • Messersmith PB, Giannelis EP (1994) Synthesis and characterisation of layered silicate-epoxy nanocomposites. Chem Mater 6:1719

    Google Scholar 

  • Mohammed RD (2007) Material properties and fracture mechanisms of epoxy nano-composites. PhD thesis, mechanical engineering. Imperial college of science, technology and medicine, London

    Google Scholar 

  • Moloney AC, Kausch HH et al (1983) The fracture of particulate-filled epoxide resins. J Mater Sci 19:1125

    Google Scholar 

  • Montanari GC, Ciani F et al (2005) Electric strength, space charge and surface discharge characterization of nanostructured epoxy-silicate insulating materials. In: 2005 International symposium on electrical insulating materials, vols 1–3, Tokyo, Institute of Electrical Engineers, Japan

    Google Scholar 

  • Morisada Y, Miyamoto Y et al (2007) Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. Int J Refract Met Hard Mater 25:322

    Google Scholar 

  • Naganuma T, Kagawa Y (2002) Effect of particle size on the optically transparent nano meter-order glass particle-dispersed epoxy matrix composites. Compos Sci Technol 62:1187

    Google Scholar 

  • Nanoresins (2008.) http://www.nanoresins.com. Retrieved 9 Apr 2008

  • Oba T (1999) The fatigue behaviour of toughened epoxy polymers. PhD thesis, mechanical engineering. Imperial college of science, technology and medicine, London

    Google Scholar 

  • Patel S, Bandyopadhyay A et al (2006) Synthesis and properties of nanocomposite adhesives. J Adhes Sci Technol 20:371

    Google Scholar 

  • Pearson RA, Yee AF (1991) Influence of particle-size and particle-size distribution on toughening mechanisms in rubber-modified epoxies. J Mater Sci 26:3828

    Google Scholar 

  • Puglia D, Valentini L et al (2003) Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. J Appl Polym Sci 88:452

    Google Scholar 

  • Radford T (2003) Brave new world or miniature menace? Why Charles fears grey goo nightmare. The Guardian, London, Issued 29 April 2003

    Google Scholar 

  • Ragosta G, Abbate M et al (2005) Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46:10506

    Google Scholar 

  • Rosso P, Ye L et al (2006) A toughened epoxy resin by silica nanoparticle reinforcement. J Appl Polym Sci 100:1849

    Google Scholar 

  • Rothon RN, Hancock M (1995) General principles guiding selection and use of particulate materials. In: Rothon RN (ed) Particulate-filled polymer composites. Longman Scientific and Technical, Harlow, p 1

    Google Scholar 

  • Saito R, Dresselhaus G et al (1998) Physical properties of carbon nanotubes. Imperial College, London

    Google Scholar 

  • Salinas-Ruiz MDM (2009) Development of a rubber toughened epoxy adhesive loaded with carbon nanotubes, for aluminium – polymer bonds. PhD thesis, School of applied science, Cranfield University

    Google Scholar 

  • Sandler J, Shaffer MSP et al (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967

    Google Scholar 

  • Sandler JKW, Kirk JE et al (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893

    Google Scholar 

  • Sautereau H, Maazouz A et al (1995) Fatigue behavior of glass bead filled epoxy. J Mater Sci 30:1715

    Google Scholar 

  • Schadler LS (2003) Polymer-based and polymer-filled nanocomposites. In: Ajayan PM, Schadler LS et al (eds) Nanocomposite science and technology. Wiley-VCH, Weinheim, p 380

    Google Scholar 

  • Schmid CF, Klingenberg DJ (2000) Mechanical flocculation in flowing fiber suspensions. Phys Rev Lett 84:290

    Google Scholar 

  • Shaffer MSP, Kinloch IA (2004) Prospects for nanotube and nanofibre composites. Compos Sci Technol 64:2281

    Google Scholar 

  • Shaffer MSP, Sandler JKW (2006) Carbon nanotube/nanofibre polymer composites. In: Advani SG (ed) Processing and properties of nanocomposites. World Scientific, Singapore

    Google Scholar 

  • Sheng N, Boyce MC et al (2004) Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45:487

    Google Scholar 

  • Sigma Aldrich (2008.) http://www.sigmaaldrich.com Retrieved 9 Apr 2008

  • Sohn Lee J (2009) The fatigue behaviour of nano-modified epoxy adhesives. PhD thesis, Department of mechanical engineering, Imperial college London, London

    Google Scholar 

  • Sorrentino A, Gorrasi G et al (2006) Barrier properties of polymer/clay nanocomposites. In: Mai YW, Yu ZZ (eds) Polymer nanocomposites. Woodhead, Cambridge, p 594

    Google Scholar 

  • Sprenger S, Eger C et al (2003) Nanoadhesives: toughness and high strength. Adhaesion, Kleben and Dichten 2003:24

    Google Scholar 

  • Sprenger S, Eger C et al (2004). Nano-modified ambient temperature curing epoxy adhesives. Adhaesion, Kleben and Dichten 2004:1

    Google Scholar 

  • Tang Y, Liang G et al (2007) Performance of aluminum borate whisker reinforced cyanate ester resin. J Appl Polym Sci 106:4131

    Google Scholar 

  • Tarrant AE (2004) Thermoset-acrylic/layered-silicate nanocomposites: synthesis and structure-property relationships. Imperial College London Thesis, London

    Google Scholar 

  • Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R 53:73

    Google Scholar 

  • Triantafyllidis KS, LeBaron PC et al (2006) Epoxy-clay fabric film composites with unprecedented oxygen-barrier properties. Chem Mater 18:4393

    Google Scholar 

  • Vanorio T, Prasad M et al (2003) Elastic properties of dry clay mineral aggregates, suspensions and sandstones. Geophys J Int 155:319

    Google Scholar 

  • Wang ZL (ed) (2001) Characterization of nanophase materials. Wiley-VCH, Weinheim

    Google Scholar 

  • Wang Z, Massam J et al (2000) Epoxy-clay nanocomposites. In: Pinnavaia TJ, Beall GW (eds) Polymer-clay nanocomposites. Wiley, Chichester

    Google Scholar 

  • Warheit DB, Laurence BR et al (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117

    Google Scholar 

  • Wetzel B, Rosso P et al (2006) Epoxy nanocomposites – fracture and toughening mechanisms. Eng Fract Mech 73:2375

    Google Scholar 

  • Xie X-L, Mai Y-W et al (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater Sci Eng R 49:89

    Google Scholar 

  • Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45:8211

    Google Scholar 

  • Yasmin A, Abot JL et al (2003) Processing of clay/epoxy nanocomposites by shear mixing. Scr Mater 49:81

    Google Scholar 

  • Yasmin A, Luo JJ et al (2006a) Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos Sci Technol 66:2415

    Google Scholar 

  • Yasmin A, Luo JJ et al (2006b) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182

    Google Scholar 

  • Yin M, Koutsky JA et al (1993) Characterization of carbon microfibers as reinforcement for epoxy resins. Chem Mater 5:1024

    Google Scholar 

  • Zeng MF, Sun XD et al (2007) Effects of SiO2 nanoparticles on the performance of carboxyl-randomized liquid butadiene-acrylonitrile rubber modified epoxy nanocomposites. J Appl Polym Sci 106:1347

    Google Scholar 

  • Zhang H, Zhang Z et al (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54:1833

    Google Scholar 

  • Zhang W, Picu RC et al (2007) Suppression of fatigue crack growth in carbon nanotube composites. Appl Phys Lett 91:193109

    Google Scholar 

  • Zhou Y, Pervin F et al (2007) Effect vapor grown carbon nanofiber on thermal and mechanical properties of epoxy. J Mater Sci 42:7544

    Google Scholar 

  • Zhu YQ, Kroto HW et al (2002) A systematic study of ceramic nanostructures generated by arc discharge. Chem Phys Lett 365:457

    Google Scholar 

  • Zunjarrao S, Sriraman R et al (2006) Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites. J Mater Sci 41:2219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambrose C. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Taylor, A.C. (2017). Adhesives with Nanoparticles. In: da Silva, L., Öchsner, A., Adams, R. (eds) Handbook of Adhesion Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42087-5_55-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42087-5_55-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42087-5

  • Online ISBN: 978-3-319-42087-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics