Skip to main content

Bacteriophage Use in Molecular Biology and Biotechnology

  • Reference work entry
  • First Online:
Bacteriophages

Abstract

Since their discovery in the early twentieth century, bacteriophages (phages) have played a central role in understanding many key principles in molecular biology. In particular, they were essential model organisms in the search for the physical nature and function of the gene, beginning with the establishment of the American Phage Working Group by Max Delbrück and extending to explication of Francis Crick’s central dogma of molecular biology through studies of RNA transcription and protein expression in phage λ. Beyond illuminating fundamental principles of molecular biology, phages have also been used extensively in biotechnology. Phage biology is a rich source of methods used in recombinant DNA technology, clinical diagnostics, and synthetic biology. Although phage biology is often criticized as passé, there are still compelling reasons to study phages. New frontiers of complexity in biology call for fresh research into phage biology that promises to yield important advances in our understanding of ecology and evolution, our ability to manipulate genetic material, and our investigations into emergent phenomena in systems biology. Here we trace the fundamental and applied discoveries enabled by the study of bacteriophage biology from the early twentieth century till today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abshire T, Brown J, Ezzell J (2005) Production and validation of the use of gamma phage for identification of Bacillus anthracis. J Clin Microbiol 43:4780–4788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ackers GK, Johnson AD, Shea MA (1982) Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci 79:1129–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adhya S, Gottesman M, De Crombrugghe B (1974) Release of polarity in Escherichia coli by gene N of phage λ: termination and antitermination of transcription. Proc Natl Acad Sci 71:2534–2538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arber W, Dussoix D (1962) Host specificity of DNA produced by Escherichia coli: I. Host controlled modification of bacteriophage λ. J Mol Biol 5:18–36

    CAS  PubMed  Google Scholar 

  • Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149:1633–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Astrachan L, Volkin E (1958) Properties of ribonucleic acid turnover in T2-infected Escherichia coli. Biochim Biophys Acta 29:536–544

    CAS  PubMed  Google Scholar 

  • Atlung T, Nielsen A, Rasmussen LJ, Nellemann LJ, Holm F (1991) A versatile method for integration of genes and gene fusions into the λ attachment site of Escherichia coli. Gene 107:11–17

    CAS  PubMed  Google Scholar 

  • Auvray F, Coddeville M, Ritzenthaler P, Dupont L (1997) Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4. J Bacteriol 179:1837–1845

    Google Scholar 

  • Bail O (1922) Elementarbakteriophagen des Shigabacillus. Wien klin Wochenschr: 743

    Google Scholar 

  • Barner HD, Cohen SS (1954) The induction of thymine synthesis by T2 infection of a thymine requiring mutant of Escherichia coli. J Bacteriol 68:80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y (2015) Impact of regulatory variation from RNA to protein. Science 347:664–667

    CAS  PubMed  Google Scholar 

  • Beadle GW, Tatum EL (1941) Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci 27:499–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benzer S (1959) On the topology of the genetic fine structure. Proc Natl Acad Sci 45:1607–1620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertani G (2004) Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186:595–600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertani G, Weigle J (1953) Host controlled variation in bacterial viruses. J Bacteriol 65:113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betz UA, Voßhenrich CA, Rajewsky K, Müller W (1996) Bypass of lethality with mosaic mice generated by Cre--loxP-mediated recombination. Curr Biol 6:1307–1316

    CAS  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci 99:14250–14255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner S, Jacob F, Meselson M (1961) An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190:576–581

    CAS  PubMed  Google Scholar 

  • Cairns J, Stent GS, Watson JD (1968) Phage and the origins of molecular biology. J Hist Biol 1(1):155–161

    Google Scholar 

  • Calef E, Licciardello G (1960) Recombination experiments on prophage host relationships. Virology 12:81–103

    Google Scholar 

  • Campbell AM (1963) Episomes. Adv Genet 11:101–145

    Google Scholar 

  • Campbell AM (1993) Thirty years ago in genetics: prophage insertion into bacterial chromosomes. Genetics 133:433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan LY, Kosuri S, Endy D (2005) Refactoring bacteriophage T7. Mol Syst Biol 1:1–10

    Google Scholar 

  • Cherry W, Davis BR, Edwards PR, Hogan R, others (1954) A simple procedure for the identification of the genus Salmonella by means of a specific bacteriophage. J Lab Clin Med 44:51–55

    Google Scholar 

  • Cohen SS (1948) The synthesis of bacterial viruses II. The origin of the phosphorus found in the desoxyribonucleic acids of the T2 and T4 bacteriophages. J Biol Chem 174:295–303

    CAS  PubMed  Google Scholar 

  • Cohen SS, Barner HD (1954) Studies on unbalanced growth in Escherichia coli. Proc Natl Acad Sci 40:885–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen SS, Flaks JG, Barner HD, Loeb MR, Lichtenstein J (1958) The mode of action of 5-fluorouracil and its derivatives. Proc Natl Acad Sci 44:1004–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins J, Hohn B (1978) Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads. Proc Natl Acad Sci 75:4242–4246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox CR (2012) 10 Bacteriophage-based methods of bacterial detection and identification. In: Hyman P, Abedon ST (Eds) Bacteriophages in health and disease, vol 24. CABI, Oxfordshire, UK, p 134

    Google Scholar 

  • Cox CR, Rees JC, Voorhees KJ (2012) Modeling bacteriophage amplification as a predictive tool for optimized MALDI-TOF MS-based bacterial detection. J Mass Spectrom 47:1435–1441

    CAS  PubMed  Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    CAS  PubMed  Google Scholar 

  • Crick F, Barnett L, Brenner S, Watts-Tobin RJ (1961) General nature of the genetic code for proteins. Macmillan Journals, London

    Google Scholar 

  • d’Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. CR Acad Sci Paris 165:373–375

    Google Scholar 

  • d’Herelle F (1931) Bacterial mutations. Yale J Biol Med 4:55

    PubMed  PubMed Central  Google Scholar 

  • Delbrück M (1945) Interference between bacterial viruses: III. The mutual exclusion effect and the depressor effect. J Bacteriol 50(2):151

    PubMed  PubMed Central  Google Scholar 

  • Dodd IB, Shearwin KE, Perkins AJ, Burr T, Hochschild A, Egan JB (2004) Cooperativity in long-range gene regulation by the λ CI repressor. Genes Dev 18:344–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dussoix D, Arber W (1962) Host specificity of DNA produced by Escherichia coli: II. Control over acceptance of DNA from infecting phage λ. J Mol Biol 5:37–49

    CAS  PubMed  Google Scholar 

  • Ellis EL, Delbrück M (1939) The growth of bacteriophage. J Gen Physiol 22:365–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335

    CAS  PubMed  Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 438:449

    CAS  PubMed  Google Scholar 

  • Feiss M, Widner W, Miller G, Johnson G, Christiansen S (1983) Structure of the bacteriophage lambda cohesive end site: location of the sites of terminase binding (cosB) and nicking (cosN). Gene 24:207–218

    CAS  PubMed  Google Scholar 

  • Felix A (1956) Phage typing of Salmonella typhimurium: its place in epidemiological and epizootiological investigations. Microbiology 14:208–222

    Google Scholar 

  • Fisk RT (1942) Studies on staphylococci: I. occurrence of bacteriophage carriers among strains of Staphylococcus aureus. J Infect Dis 71:153–160

    Google Scholar 

  • Flaks JG, Cohen SS (1959) Virus-induced acquisition of metabolic function I. Enzymatic formation of 5-hydroxymethyldeoxycytidylate. J Biol Chem 234:1501–1506

    CAS  PubMed  Google Scholar 

  • Fokine A, Leiman PG, Shneider MM, Ahvazi B, Boeshans KM, Steven AC, Black LW, Mesyanzhinov VV, Rossmann MG (2005) Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc Natl Acad Sci U S A 102:7163–7168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Kohli AG, Moser F, Endy D, Belcher AM (2012) Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery. ACS Synth Biol 1:576–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gildmeister E, Herzberg K (1924) Zur theorie der bakteriophagen (d’Herelle Lysine). 6. Mitteilung über das d’Herellesche phanomen. Zentr Bakteriol Parasitenk I Abt Orig 93:402–420

    Google Scholar 

  • Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA ‘fingerprints’. Nature 318:577–579

    CAS  PubMed  Google Scholar 

  • Gingery R, Echols H (1967) Mutants of bacteriophage lambda unable to integrate into the host chromosome. Proc Natl Acad Sci 58:1507–1514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gold M, Hurwitz J (1963) The enzymatic methylation of the nucleic acids. Cold Spring Harb Symp Quant Biol 28:149–156

    CAS  Google Scholar 

  • Guarneros G, Echols H (1970) New mutants of bacteriophage λ with a specific defect in excision from the host chromosome. J Mol Biol 47:565–574

    CAS  PubMed  Google Scholar 

  • Haldane JBS (1980) The origin of life. In: Goldsmith D (Ed) The quest for extraterrestrial life. University Science Books, Mill Valley, CA, p 28.

    Google Scholar 

  • Hall BD, Spiegelman S (1961) Sequence complementarity of T2-DNA and T2-specific RNA. Proc Natl Acad Sci 47:137–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heidelberger C, Chaudhuri N, Danneberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer R, Pleven E, Scheiner J (1957) Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179:663–666

    CAS  PubMed  Google Scholar 

  • Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’sa phage. Proc Natl Acad Sci 96:2192–2197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hershey AD (1953) Nucleic acid economy in bacteria infected with bacteriophage T2. J Gen Physiol 37:1–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hillier K (2006) Babies and bacteria: phage typing, bacteriologists, and the birth of infection control. Bull Hist Med 80:733–761

    PubMed  Google Scholar 

  • Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci 79:3398–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holland R, Wilkes J, Rafii F, Sutherland J, Persons C, Voorhees K, Lay J (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:1227–1232

    CAS  PubMed  Google Scholar 

  • Howell ES (2014) How many stars are in the universe? Space.com, May 31

    Google Scholar 

  • Iranzo J, Krupovic M, Koonin EV (2016) The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. MBio 7:e00978–e00916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci 69:2904–2909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    CAS  PubMed  Google Scholar 

  • Jacob F, Wollman E (1956) Sur les processus de conjugaison et de recombinaison chez Escherichia coli. 1. Linduction par conjugaison ou induction zygotique. Ann Inst Pasteur (Paris) 91:486–510

    Google Scholar 

  • Jaschke PR, Lieberman EK, Rodriguez J, Sierra A, Endy D (2012) A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast. Virology 434:278–284

    CAS  PubMed  Google Scholar 

  • Judson HF (1979) The eighth day of creation. Touchstone Books, New York, p 550

    Google Scholar 

  • Kelly TJ, Smith HO (1970) A restriction enzyme from Hemophilus influenzae: II. Base sequence of the recognition site. J Mol Biol 51:393–409

    Google Scholar 

  • Kikuchi Y, Nash HA (1978) The bacteriophage lambda int gene product. A filter assay for genetic recombination, purification of int, and specific binding to DNA. J Biol Chem 253:7149–7157

    CAS  PubMed  Google Scholar 

  • Koch AL, Putnam FW, Evans E Jr (1952) The purine metabolism of Escherichia coli. J Biol Chem 197:105–112

    CAS  PubMed  Google Scholar 

  • Koob M, Grimes E, Szybalski W (1988) Conferring operator specificity on restriction endonucleases. Science 241:1084–1087

    CAS  PubMed  Google Scholar 

  • Koonin EV (2009) On the origin of cells and viruses. Ann N Y Acad Sci 1178:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kutter E, Sulakvelidze A (2004) Bacteriophages: biology and applications. CRC Press, New York

    Google Scholar 

  • Landy A, Ruedisueli E, Robinson L, Foeller C, Ross W (1974) Digestion of deoxyribonucleic acids from bacteriophage T7, λ, and ϖ80h with site-specific nucleases from Hemophilus influenzae strain Rc and strain Rd. Biochemistry 13:2134–2142

    Google Scholar 

  • Lay JO (2001) MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 20:172–194

    CAS  PubMed  Google Scholar 

  • Lederberg S (1957) Suppression of the multiplication of heterologous bacteriophages in lysogenic bacteria. Virology 3:496–513

    CAS  PubMed  Google Scholar 

  • Lederberg J, Lederberg EM (1952) Replica plating and indirect selection of bacterial mutants. J Bacteriol 63:399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lederberg EM, Lederberg J (1953) Genetic studies of lysogenicity in Escherichia coli. Genetics 38:51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Pascopella L, Jacobs WR, Hatfull GF (1991) Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc Natl Acad Sci 88:3111–3115

    Google Scholar 

  • Lenski RE (2017) What is adaptation by natural selection? Perspectives of an experimental microbiologist. PLoS Genet 13:e1006668

    PubMed  PubMed Central  Google Scholar 

  • Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    CAS  PubMed  Google Scholar 

  • Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE (2014) Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 42:3–19

    CAS  PubMed  Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luria SE, Human ML (1952) A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol 64:557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lwoff A (1953) Lysogeny. Bacteriol Rev 17:269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lwoff A (1966) The prophage and I. In: Phage and the origins of molecular biology. Cold Spring Harbor Laboratory Press, New York, pp 88–99

    Google Scholar 

  • MacLeod AO, McCarty M (1944) Studies of the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158

    PubMed  PubMed Central  Google Scholar 

  • Madonna AJ, Cuyk SV, Voorhees KJ (2003) Detection of Escherichia coli using immunomagnetic separation and bacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 17:257–263

    CAS  PubMed  Google Scholar 

  • Madonna AJ, Voorhees KJ, Rees JC (2007) Method for detection of low concentrations of a target bacterium that uses phages to infect target bacterial cells. U.S. Patent US7166425B2

    Google Scholar 

  • Manson LA (1953) The metabolism of ribonucleic acid in normal and bacteriophage infected Escherichia coli. J Bacteriol 66:703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mertz JE, Davis RW (1972) Cleavage of DNA by R1 restriction endonuclease generates cohesive ends. Proc Natl Acad Sci 69:3370–3374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE (2012) Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335:428–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JR, Dobias DT, Medina SJ, Servilio L, Gupta A, Lenski RE (2016) Ecological speciation of bacteriophage lambda in allopatry and sympatry. Science 354(6317):1301–1304. https://doi.org/10.1126/science.aai8446

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolle P, Le Minor L, Buttiaux R, Ducrest P (1952) Phage typing of Escherichia coli isolated from cases of infantile gastroenteritis. II. Relative frequency of types in different areas and the epidemiological value of the method. Bull Acad Natl Med 136:483–485

    CAS  PubMed  Google Scholar 

  • Nkrumah LJ, Muhle RA, Moura PA, Ghosh P, Hatfull GF, Jacobs WR, Fidock DA (2006) Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nat Methods 3:615–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S (2005) Switches in bacteriophage lambda development. Annu Rev Genet 39:409–429

    CAS  PubMed  Google Scholar 

  • Pardee AB, Jacob F, Monod J (1959) The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by E. coli. J Mol Biol 1:165–178

    CAS  Google Scholar 

  • Pfankuch E, Kausche G (1940) Isolierung und, übermikroskopische Abbildung eines Bakteriophagen. Naturwissenschaften 28:46–46

    CAS  Google Scholar 

  • Pleceas P, Brandis H (1974) Rapid group and species identification of enterococci by means of tests with pooled phages. J Med Microbiol 7:529–534

    CAS  PubMed  Google Scholar 

  • Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, Shelton KD, Lindner J, Cherrington AD, Magnuson MA (1999) Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274:305–315

    CAS  PubMed  Google Scholar 

  • Ptashne M (1986) A genetic switch: gene control and phage lambda. Cell Press and Blackwell Scientific Publications, Cambridge, MA

    Google Scholar 

  • Ptashne M (1967) Specific binding of the lambda phage repressor to lambda DNA. Nature 214:232–234

    CAS  PubMed  Google Scholar 

  • Rees JC, Voorhees KJ (2005) Simultaneous detection of two bacterial pathogens using bacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 19:2757–2761

    CAS  PubMed  Google Scholar 

  • Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI (2012) Going viral: next generation sequencing applied to human gut phage populations. Nat Rev Microbiol 10:607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JW (1969) Termination factor for RNA synthesis. Nature 224:1168–1174

    CAS  PubMed  Google Scholar 

  • Roszczyk E, Goodgal S (1975) Methylase activities from Haemophilus influenzae that protect Haemophilus parainfluenzae transforming deoxyribonucleic acid from inactivation by Haemophilus influenzae endonuclease R. J Bacteriol 123:287–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy PH, Smith HO (1973) DNA methylases of Hemophilus influenzae Rd: II. Partial recognition site base sequences. J Mol Biol 81:445–459

    Google Scholar 

  • Ruska H (1940) Die Sichtbarmachung der bakteriophagen lyse im übermikroskop. Naturwissenschaften 28:45–46

    CAS  Google Scholar 

  • Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer B, Henderson N (1989) Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res 17:147–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesinger M (1936) The Feulgen reaction of the bacteriophage substance. Nature 138:508

    Google Scholar 

  • Segre G (2000) The big bang and the genetic code. Nature 404:437–437

    CAS  PubMed  Google Scholar 

  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    CAS  PubMed  Google Scholar 

  • Shcheglova MK, Neidbailik IN (1968) [Experience in phage typing of Listeria]. Veterinariia 45:102–103

    Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    CAS  PubMed  Google Scholar 

  • Stent GS (1968) That was the molecular biology that was. Science 160:390–395

    CAS  PubMed  Google Scholar 

  • Sternberg N, Hamilton D, Hoess R (1981a) Bacteriophage P1 site-specific recombination: II. Recombination between loxP and the bacterial chromosome. J Mol Biol 150:487–507

    CAS  PubMed  Google Scholar 

  • Sternberg N, Hamilton D, Austin S, Yarmolinsky M, Hoess R (1981b) Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harb Symp Quant Biol 45:297–309

    CAS  PubMed  Google Scholar 

  • Stewart G, Jassim S, Denyer SP, Newby P, Linley K, Dhir V (1998) The specific and sensitive detection of bacterial pathogens within 4 h using bacteriophage amplification. J Appl Microbiol 84:777–783

    CAS  PubMed  Google Scholar 

  • Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci 109:7085–7090

    Google Scholar 

  • Thal E, Nordberg B (1968) On the diagnostic of Bacillus anthracis with bacteriophages. Berl Munch Tierarztl Wochenschr 81:11

    CAS  PubMed  Google Scholar 

  • Thomason L, Calendar R, Ow D (2001) Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage fC31 site-specific recombination system. Mol Gen Genomics 265:1031–1038

    Google Scholar 

  • Upholt WB (1977) Estimation of DNA sequence divergence from comparison of restriction endonuclease digests. Nucleic Acids Res 4:1257–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volkin E, Astrachan L (1956) Phosphorus incorporation in Escherichia coli ribonucleic acid after infection with bacteriophage T2. Virology 2:149–161

    CAS  PubMed  Google Scholar 

  • Wallmark G, Laurell G (1951) Phage typing of Staphylococcus aureus some bacteriological and clinical observations. Acta Pathol Microbiol Scand 30:109–114

    Google Scholar 

  • Wang G, Zhu X, Hood L, Ao P (2013) From phage lambda to human cancer: endogenous molecular-cellular network hypothesis. Quant Biol 1:32–49

    CAS  Google Scholar 

  • Weigt M, White RA, Szurmant H, Hoch JA, Hwa T (2009) Identification of direct residue contacts in protein – protein interaction by message passing. Proc Natl Acad Sci 106:67–72

    CAS  PubMed  Google Scholar 

  • Weisberg RA, Landy A (1983) Site-specific recombination in phage lambda. Cold Spring Harb Monogr Arch 13:211–250

    CAS  Google Scholar 

  • Wyatt G, Cohen SS (1953) The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem J 55:774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Weaver DT (1997) Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res 25:2985–2991

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Cox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brown, N., Cox, C. (2021). Bacteriophage Use in Molecular Biology and Biotechnology. In: Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-41986-2_15

Download citation

Publish with us

Policies and ethics