Skip to main content

Dolomite and Dolomitization

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 330 Accesses

Definition

Dolomite is a trigonal–rhombohedral, ordered Ca, Mg carbonate mineral (CaMg (CO3)2) occurring primarily in sedimentary and metamorphic rocks. Dolomitization is the process in which Mg ions replace Ca ions in a calcium carbonate mineral.

Crystal Structure and Geochemistry

The crystal structure of dolomite is similar to calcite with Mg ions substituting for Ca in every other layer. To accommodate this substitution, due to differences in bond lengths between Ca–CO3 and Mg–CO3 (238 pm versus 208 pm, respectively), CO3 in the Mg layer is uniformly rotated about the threefold axis relative to calcite (Reeder and Wenk, 1983).

Stoichiometric dolomite (50:50 CaCO3:MgCO3) is part of a solid solution between calcite (CaCO3), magnesite (MgCO3), and ankerite (FeCO3). Iron substitution as well as Mg substitution greater than ~10 mol% will lead to disordering and expansion of the unit cell (Antao et al., 2004; Carmichael and Ferry, 2008). These disordered phases are thermodynamically...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Antao, S., Mulder, W., Hassan, I., Crichton, W., and Parise, J., 2004. Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite ↔ dolomite reaction boundary. American Mineralogist, 89, 1142–1147.

    Article  Google Scholar 

  • Arvidson, R., and MacKenzie, F., 1999. The dolomite problem: control of precipitation kinetics by temperature and saturation state. American Journal Science, 299, 257–288.

    Article  Google Scholar 

  • Baker, P., and Kastner, M., 1981. Constraints on the formation of sedimentary dolomite. Science, 213, 214–216.

    Article  Google Scholar 

  • Bontognali, T., Vasconcelos, C., Warthmann, R., Dupraz, C., Bernasconi, S., and McKenzie, J., 2008. Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36, 663–666.

    Article  Google Scholar 

  • Bontognali, T., Vasconcelos, C., Warthmann, R., Bernasconi, S., Dupraz, C., Strohmenger, C., and McKenzie, J., 2010. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates). Sedimentology, 57, 824–844.

    Article  Google Scholar 

  • Brady, P., Krumhans, J., and Papenguth, J., 1996. Surface complexation clues to dolomite growth. Geochimica et Cosmochimica Acta, 60, 727–731.

    Article  Google Scholar 

  • Braissant, O., Decho, W., Dupraz, C., Glunk, C., Przekop, K., and Visscher, P., 2007. Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5, 401–411.

    Article  Google Scholar 

  • Carmichael, S., and Ferry, A., 2008. Formation of replacement dolomite in the latemar carbonate buildup, dolomite, Northern Italy: part 2. Origin of the dolomitization fluid and the amount and duration of fluid flow. American Journal of Science, 308, 885–904.

    Article  Google Scholar 

  • de Dolomieu, D., 1791. Sur un genre de pierres calcaires trespeu effervescentes avec les acides et phosphorescentes par la collision. Journal de Physique, 39, 3–10.

    Google Scholar 

  • Gale, J., Lander, R., Reed, F., and Laubach, S., 2010. Modeling fracture porosity evolution in dolostone. Journal of Structural Geology, 32, 1201–1211.

    Article  Google Scholar 

  • Gregg, J., Bish, D., Kaczmarek, S., and Machel, H., 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology, 62, 1749–1769.

    Article  Google Scholar 

  • Hardie, L., 1987. Dolomitization: a critical view of some current views. Journal of Sedimentary Petrology, 57, 166–183.

    Article  Google Scholar 

  • Land, L., 1998. Failure to precipitate dolomite at 25°C from dilute solution despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry, 4, 361–368.

    Article  Google Scholar 

  • Kenward, P., Goldstein, R., González, L., and Roberts, J., 2009. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea. Geobiology, 7, 556–565.

    Article  Google Scholar 

  • Kenward, P., Goldstein, R., González, L., Fowle, D., Ueshima, M., and Roberts, J., 2013. Ordered, low-temperature dolomite mediated by carboxyl-group density of microbial cell walls. AAPG Bulletin, 97, 2113–2125.

    Article  Google Scholar 

  • Krause, S., Liebtrau, V., Gorb, S., Sanchez-Roman, M., McKenzie, M., and Treude, T., 2012. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma. Geology, 40, 587–590.

    Article  Google Scholar 

  • Li, W., Beard, B. L., Li, C., Xu, H., and Johnson, C., 2015. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochimica et Cosmochimica Acta, 157, 164–181.

    Article  Google Scholar 

  • Machel, H., 2004. Concepts and models of dolomitization: a critical reappraisal. Geological Society, London, Special Publications, 235, 7–63.

    Article  Google Scholar 

  • Mazullo, S., 2000. Organogenic dolomitization in peritidal to deep sea sediments. Journal of Sedimentary Research, 70, 10–23.

    Article  Google Scholar 

  • McKenzie, J., and Vasconcelos, C., 2009. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology, 56, 205–219.

    Article  Google Scholar 

  • Meister, P., McKenzie, J., Vasconcelos, C., Bernasconi, S., Frank, M., Guthjahrs, M., and Schrag, M., 2007. Dolomite formation in the dynamic deep biosphere: results from the Peru margin. Sedimentology, 54, 1007–1031.

    Article  Google Scholar 

  • Moreira, N., Walter, W., Vasconcelos, C., McKenzie, J., and McCall, P., 2004. Role of sulfide oxidation in dolomitization: sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology, 32, 701–704.

    Article  Google Scholar 

  • Petrash, D., Lalonde, S., Gonzalez-Arismendi, G., Gordon, R., Gingras, M., and Konhauser, K., 2015. Can Mn-S cycling drive sedimentary dolomite formation? A hypothesis. Chemical Geology, 404, 27–40.

    Article  Google Scholar 

  • Reeder, R., and Wenk, H., 1983. Structure refinements of some thermally disordered dolomites. American Mineralogist, 68, 769–776.

    Google Scholar 

  • Roberts, J., Bennett, P., Macpherson, G., González, L., and Milliken, K., 2004. Microbial precipitation of dolomite in groundwater: field and laboratory experiments. Geology, 32, 277–280.

    Article  Google Scholar 

  • Roberts, J., Kenward, P., Fowle, D., González, L., Goldstein, R., and Moore, D., 2013. Surface chemistry allows for precipitation of dolomite at low temperature. PNAS, 110, 14540–14545.

    Article  Google Scholar 

  • Rodriguez-Blanco, J., Shaw, S., and Benning, L., 2015. A route for the direct crystallization of dolomite. American Mineralogist, 100, 1172–1181.

    Article  Google Scholar 

  • Sánchez-Román, M., Vasconcelos, C., Schmid, T., Dittrich, M., McKenzie, J., Zenobi, R., and Rivadeneyra, M., 2008. Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology, 36, 879–882.

    Article  Google Scholar 

  • Sánchez-Román, M., McKenzie, J., de Luca Rebello Wagner, A., Rivadeneyra, M., and Vasconcelos, C., 2009. Presence of sulfate does not inhibit low-temperature dolomite precipitation. Earth and Planetary Science Letters, 285, 131–139.

    Article  Google Scholar 

  • Schmoker, J., and Halley, R., 1982. Carbonate porosity versus depth: a predictable relation for south Florida. AAPG Bulletin, 66, 2561–2570.

    Google Scholar 

  • Sibley, D., Dedoes, R., and Bartlett, T., 1987. The kinetics of dolomitization. Geology, 15, 1112–1114.

    Article  Google Scholar 

  • Slaughter, M., and Hill, R., 1991. The influence of organic matter in organogenic dolomitization. Journal of Sedimentary Petrology, 61, 296–303.

    Article  Google Scholar 

  • Sun, S., 1995. Dolomite reservoirs: porosity evolution and reservoir characteristics. AAPG Bulletin, 79, 186–204.

    Google Scholar 

  • Sun, J., Wu, Z., Cheng, H., Zhang, Z., and Frost, R., 2014. A Raman spectroscopic comparison of calcite and dolomite. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 117, 158–162.

    Article  Google Scholar 

  • van Lith, Y., Warthmann, R., Vasconcelos, C., and McKenzie, J., 2003. Sulfate-reducing bacteria induce low-temperature Ca dolomite and high-Mg calcite formation. Geobiology, 1, 71–79.

    Article  Google Scholar 

  • Vasconcelos, C., and McKenzie, J., 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research, 67, 378–390.

    Google Scholar 

  • Vasconcelos, C., McKenzie, J., Bernasconi, S., Grujic, D., and Tien, A., 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377, 220–222.

    Article  Google Scholar 

  • Warthmann, R., van Lith, Y., Vasconcelos, C., McKenzie, J., and Karpoff, A., 2000. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28, 1091–1094.

    Article  Google Scholar 

  • Wright, D., and Wacey, D., 2004. Sedimentary dolomite: a reality check. In Braithwaite, C., Rizzi, G., and Darke, G. (eds.), The geometry and petrogenesis of dolomite hydrocarbon reservoirs. Geological Society Special Publication 235, pp. 65–74.

    Google Scholar 

  • Wright, D., and Wacey, D., 2005. Precipitation of dolomite using sulfate-reducing bacteria from the Coorong region, South Australia: significance and implications. Sedimentology, 28, 987–1008.

    Article  Google Scholar 

  • Wilkinson, B., and Given, K., 1986. Secular variation in abiotic marine carbonates: constraints on Phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios. Journal of Geology, 94, 21–33.

    Article  Google Scholar 

  • Zenger, D., Bourrouilh-Le Jan, F., and Carozzi, A., 1994. Dolomieu and the first description of dolomite. In Purser, B., Tucker, M., and Zenger, D. (eds.), Dolomites: A Volume in Honour of Dolomieu. IAS Special Publication 21, pp. 21–28.

    Google Scholar 

  • Zhang, F., Xu, H., Konishi, H., and Roden, E., 2010. A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series. American Mineralogist, 95, 1650–1656.

    Article  Google Scholar 

  • Zhang, F., Xu, H., Konishi, H., Shelobolina, E., and Roden, E., 2012a. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: a potential precursor of sedimentary dolomite. American Mineralogist, 97, 556–567.

    Article  Google Scholar 

  • Zhang, F., Xu, H., Konishi, H., Kemp, J., and Roden, E., 2012b. Dissolved sulfide-catalyzed crystallization of Ca-Mg carbonates and implications for the formation mechanism of sedimentary dolomite. Geochimica et Cosmochimica Acta, 97, 148–165.

    Article  Google Scholar 

  • Zhong, S., and Mucci, A., 1989. Calcite and aragonite precipitation from seawater solutions of various salinities: precipitation rates and overgrowth compositions. Chemical Geology, 78, 283–299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Roberts, J.A. (2016). Dolomite and Dolomitization. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_93-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_93-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics