Skip to main content

Handheld Robotics for Unicompartmental Knee Arthroplasty

  • Reference work entry
  • First Online:
Minimally Invasive Surgery in Orthopedics

Abstract

Unicompartmental knee arthroplasty (UKA) can result in considerable pain relief, improvement in functional outcomes, and long-term durability when patients are appropriately selected, a sound implant design utilized, and accurate soft tissue balance as well as component and limb alignment achieved. The use of conventional instrumentation for minimally invasive UKA results in a relatively high incidence of variability in component alignment, which may predispose to premature implant failure. Semiautonomous robotic systems, including a handheld robotic sculpting tool, have been shown to optimize component and limb alignment as well as soft tissue balance. This chapter will review the role of minimally invasive robotic surgery with an image-free handheld sculpting tool (Navio PFS [Precision Free-Hand Sculptor], Smith and Nephew, Memphis, TN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borus T, Thornhill T. Unicompartmental knee arthroplasty. J Am Acad Orthop Surg. 2008;16(1):9.

    Article  PubMed  Google Scholar 

  2. Newman J, Pydisetty R, Ackroyd C. Unicompartmental or total knee replacement: the 15-year results of a prospective randomised controlled trial. J Bone Joint Surg Br. 2009;91(1):52.

    Article  CAS  PubMed  Google Scholar 

  3. Berger R, Meneghini R, Jacobs J, Sheinkop M, Della Valle C, Rosenberg A, Galante J. Results of unicompartmental knee arthroplasty at a minimum of ten years of follow-up. J Bone Joint Surg Am. 2005;87(5):999.

    Article  PubMed  Google Scholar 

  4. Murray D, Goodfellow J, O’Connor J. The Oxford medial unicompartmental arthroplasty: a ten-year survival study. J Bone Joint Surg Br. 1998;80(6):983.

    Article  CAS  PubMed  Google Scholar 

  5. Cartier P, Sanouiller JL, Grelsamer RP. Unicompartmental knee arthroplasty surgery. 10-year minimum follow-up period. J Arthroplasty. 1996;11(7):782.

    Article  CAS  PubMed  Google Scholar 

  6. Price AJ, Svard U. A second decade lifetable survival analysis of the Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res. 2011;469(1):174.

    Article  PubMed  Google Scholar 

  7. Arirachakaran A, Choowit P, Putananon C, Muangsiri S, Kongtharvonskul J. Is unicompartmental knee arthroplasty (UKA) superior to total knee arthroplasty (TKA)? A systematic review and meta-analysis of randomized controlled trial. Eur J Orthop Surg Traumatol. 2015;25(5):799.

    Article  PubMed  Google Scholar 

  8. Lyons MC, MacDonald SJ, Somerville LE, Naudie DD, McCalden RW. Unicompartmental versus total knee arthroplasty database analysis: is there a winner? Clin Orthop Relat Res. 2012;470(1):84.

    Article  PubMed  Google Scholar 

  9. Koskinen E, Eskelinen A, Paavolainen P, Pulkkinen P, Remes V. Comparison of survival and cost-effectiveness between unicondylar arthroplasty and total knee arthroplasty in patients with primary osteoarthritis: a follow-up study of 50,493 knee replacements from the Finnish Arthroplasty Register. Acta Orthop. 2008;79(4):499.

    Article  PubMed  Google Scholar 

  10. Felts E, Parratte S, Pauly V, Aubaniac J, Argenson J. Function and quality of life following medial unicompartmental knee arthroplasty in patients 60 years of age or younger. Orthop Traumatol Surg Res. 2010;96(8):861.

    Article  CAS  PubMed  Google Scholar 

  11. Noticewala M, Geller J, Lee J, Macaulay W. Unicompartmental knee arthroplasty relieves pain and improves function more than total knee arthroplasty. J Arthroplasty. 2012;27 Suppl 8:99.

    Article  PubMed  Google Scholar 

  12. Wiik AV, Aqil A, Tankard S, Amis AA, Cobb JP. Downhill walking gait pattern discriminates between types of knee arthroplasty: improved physiological knee functionality in UKA versus TKA. Knee Surg Sports Traumatol Arthrosc. 2015;23(6):1748.

    Article  PubMed  Google Scholar 

  13. Lewold S, Robertsson O, Knutson K, Lidgren L. Revision of unicompartmental knee arthroplasty: outcome in 1,135 cases from the Swedish Knee Arthroplasty study. Acta Orthop Scand. 1998;69(5):469.

    Article  CAS  PubMed  Google Scholar 

  14. Brown NM, Sheth NP, Davis K, Berend ME, Lombardi AV, Berend KR, Della Valle CJ. Total knee arthroplasty has higher postoperative morbidity than unicompartmental knee arthroplasty: a multicenter analysis. J Arthroplasty. 2012;27 Suppl 8:86.

    Article  PubMed  Google Scholar 

  15. Liddle AD, Judge A, Pandit H, Murray DW. Adverse outcomes after total and unicompartmental knee replacement in 101,330 matched patients: a study of data from the National Joint Registry for England and Wales. Lancet. 2014;384(9952):1437–45.

    Google Scholar 

  16. Chatellard R, Sauleau V, Colmar M, Robert H, Raynaud G, Brilhault J, Societe d’Orthopedie et de Traumatologie de lO. Medial unicompartmental knee arthroplasty: does tibial component position influence clinical outcomes and arthroplasty survival? Orthop Traumatol Surg Res. 2013;99(Suppl 4):S219.

    Google Scholar 

  17. Epinette J, Brunschweiler B, Mertl P, Mole D, Cazenave A. Unicompartmental knee arthroplasty modes of failure: wear is not the main reason for failure: a multicentre study of 418 failed knees. Orthop Traumatol Surg Res. 2012;98 Suppl 6:S124.

    Article  PubMed  Google Scholar 

  18. Collier MB, Eickmann TH, Sukezaki F, et al. Patient, implant, and alignment factors associated with revision of medial compartment unicondylar arthroplasty. J Arthroplasty. 2006;21(6 Suppl 2):108–15.

    Article  PubMed  Google Scholar 

  19. Hernigou P, Deschamps G. Alignment influences wear in the knee after medial unicompartmental arthroplasty. Clin Orthop Relat Res. 2004;(423):161–5.

    Google Scholar 

  20. Hernigou P, Deschamps G. Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty. J Bone Joint Surg Am. 2004;86-A(3):506–11.

    PubMed  Google Scholar 

  21. Cobb J, Henckel J, Gomes P, Harris S, Jakopec M, Rodriguez F, Barrett A, Davies B. Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. J Bone Joint Surg Br. 2006;88(2):188.

    Article  CAS  PubMed  Google Scholar 

  22. Keene G, Simpson D, Kalairajah Y. Limb alignment in computer-assisted minimally-invasive unicompartmental knee replacement. J Bone Joint Surg Br. 2006;88(1):44.

    Article  CAS  PubMed  Google Scholar 

  23. Fisher DA, Watts M, Davis KE. Implant position in knee surgery: a comparison of minimally invasive, open unicompartmental, and total knee arthroplasty. J Arthroplasty. 2003;18(7 Suppl 1):2–8.

    Google Scholar 

  24. Muller PE, Pellengahr C, Witt M, et al. Influence of minimally invasive surgery on implant positioning and the functional outcome for medial unicompartmental knee arthroplasty. J Arthroplasty. 2004;19:3.

    Article  Google Scholar 

  25. Robertsson O, Knutson K, Lewold S, Lidgren L. The routine of surgical management reduces failure after unicompartmental knee arthroplasty. J Bone Joint Surg Br. 2001;83(1):45.

    Article  CAS  PubMed  Google Scholar 

  26. Weber P, Crispin A, Schmidutz F, Utzschneider S, Pietschmann MF, Jansson V, Muller PE. Improved accuracy in computer-assisted unicondylar knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013;21(11):2453.

    Article  PubMed  Google Scholar 

  27. Jenny JY, Boeri C. Unicompartmental knee prosthesis implantation with a non-image-based navigation system: rationale, technique, case–control comparative study with a conventional instrumented implantation. Knee Surg Sports Traumatol Arthrosc. 2003;11(1):40.

    PubMed  Google Scholar 

  28. Dunbar NJ, Roche MW, Park BH, Branch SH, Conditt MA, Banks SA. Accuracy of dynamic tactile-guided unicompartmental knee arthroplasty. J Arthroplasty. 2012;27(5):803.

    Article  PubMed  Google Scholar 

  29. Lonner JH, Smith JR, Picard F, Hamlin B, Rowe PJ, Riches PE. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study. Clin Orthop Relat Res. 2015;473(1):206.

    Article  PubMed  Google Scholar 

  30. Simons M, Riches P. The learning curve of robotically-assisted unicondylar knee arthroplasty. Bone Joint J. 2014;96-B Suppl 11:152.

    Google Scholar 

  31. Smith JR, Riches PE, Rowe PJ. Accuracy of a freehand sculpting tool for unicondylar knee replacement. Int J Med Robot. 2014;10(2):162.

    Article  PubMed  Google Scholar 

  32. Jaramaz B, Nikou C, Simone A. Navio PFS for unicondylar knee replacement: early cadaver validation. Bone Joint J. 2013;95-B Suppl 28:73.

    Google Scholar 

  33. Smith JR, Picard F, Rowe PJ, Deakin A, Riches PE. The accuracy of a robotically-controlled freehand sculpting tool for unicondylar knee arthroplasty. Bone Joint J. 2013;95-B Suppl 28:68.

    Google Scholar 

  34. Conditt MA, Bargar WL, Cobb JP, Dorr LD, Lonner JH. Current concepts in robotics for the treatment of joint disease. Adv Orthop. 2013;2013:948360.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lonner JH. Indications for unicompartmental knee arthroplasty and rationale for robotic arm-assisted technology. Am J Orthop (Belle Mead NJ). 2009;38 Suppl 2:3.

    Google Scholar 

  36. Lonner JH. Robotically assisted unicompartmental knee arthroplasty with a handheld image-free sculpting tool. Oper Tech Orthop. 2015;25(2):104.

    Article  Google Scholar 

  37. Lonner JH, John TK, Conditt MA. Robotic arm-assisted UKA improves tibial component alignment: a pilot study. Clin Orthop Relat Res. 2010;468(1):141.

    Article  PubMed  Google Scholar 

  38. Gregori A, Picard F, Bellemans J, Lonner JH, Marquez R, Smith J, Simone A, Jaramaz B. The learning curve of a novel handheld robotic system for unicondylar knee arthroplasty. In: 14th Annual Meeting if the International Society for Computer Assisted Orthopaedic Surgery. Milan. 2014.

    Google Scholar 

  39. Ponzio DY, Lonner JH. Preoperative mapping in unicompartmental knee arthroplasty using computed tomography scans is associated with radiation exposure and carries high cost. J Arthroplasty. 2015;30(6):964.

    Article  PubMed  Google Scholar 

  40. Uhr A, Davis DE, Lonner JH. Partial knee arthroplasty is safe and cost effective in an outpatient setting. In: Proceedings of the Eastern Orthopaedic Association, 46th Annual Meeting. Maui. 2015.

    Google Scholar 

  41. Lang JE, Mannava S, Floyd AJ, et al. Robotic systems in orthopaedic surgery. J Bone Joint Surg Br. 2011;9:1296–9.

    Article  Google Scholar 

  42. Song E-K, Seon J-K, Yim J-H, Netravali NA, Bargar WL. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA knee. Clin Orthop Relat Res. 2013;471(1):118–26.

    Article  PubMed  Google Scholar 

  43. Bargar WL, Bauer A, Borner M. Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res. 1998;354:82–91.

    Article  PubMed  Google Scholar 

  44. Honl M, Dierk O, Gauck C, Carrero V, Lampe F, Dries S, Quante M, Schwieger K, Hille E, Morlock MM. Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. J Bone Joint Surg Am. 2003;85-A(8):1470–8.

    PubMed  Google Scholar 

  45. Chun YS, Kim KI, Cho YJ, Kim YH, Yoo MC, Rhyu KH. Causes and patterns of aborting a robot-assisted arthroplasty. J Arthroplasty. 2011;26(4):621–5.

    Article  PubMed  Google Scholar 

  46. Kanawade V, Dorr LD, Banks SA, Zhang Z, Wan Z. Precision of robotic guided instrumentation for acetabular component positioning. J Arthroplasty. 2015;30(3):392–7.

    Article  PubMed  Google Scholar 

  47. Orthopedic Network News, 2013 Hip and knee implant review. Available at: www.OrthopedicNetworkNews.com. 2013;24.

  48. Picard F, Gregori A, Bellemans J, Lonner JH, Smith J, Gonzales D, Simone A, Jaramaz B. Handheld robot-assisted unicondylar knee arthroplasty: a clinical review. In: 14th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery. Milan. 2014.

    Google Scholar 

  49. Radiation-emitting products. Available at: http://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/default.htm. Accessed 25 Feb 2014.

  50. Initiative to reduce unnecessary radiation exposure from medical imaging. 2010. Available at: http://www.fda.gov/Radiation-EmittingProducts/RadiationSafety/RadiationDoseReduction/ucm199904.htm. Accessed 20 Feb 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Shaner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Shaner, J., Ko, L.M., Lonner, J. (2016). Handheld Robotics for Unicompartmental Knee Arthroplasty. In: Scuderi, G., Tria, A. (eds) Minimally Invasive Surgery in Orthopedics. Springer, Cham. https://doi.org/10.1007/978-3-319-34109-5_123

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34109-5_123

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34107-1

  • Online ISBN: 978-3-319-34109-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics