Skip to main content

The Developmental Hourglass in the Evolution of Embryogenesis

  • Reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

Embryogenesis is the process of transformation of a single fertilized egg into a differentiated, complex organism. This requires coordinated cleavage of the fertilized egg, followed by patterning and cell-fate specification, to establish the adult body plan. Based on morphological studies and, more recently, comparative gene expression analyses, the evolution of embryogenesis in animals, and to some degree in plants, has been proposed to follow a developmental hourglass model. In this model, less conserved early events are followed by a highly conserved phylotypic stage at the narrow waist of the hourglass where species within a phylum have similar morphologies and gene expression patterns. Variation in later stages of embryogenesis then follows, providing the diversity of morphologies found in adult forms. As the phylotypic stage is the most conserved, it implies there may be greater evolutionary constrains during mid-embryogenesis compared with the less conserved early and late stages. These constraints may relate to morphological events, and/or the underlying gene regulatory networks, at the different stages of embryogenesis, as well as the requirement for embryogenesis to produce viable offspring adapted to environmental variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • von Baer KE. (1828) Ãœber Entwickelungsgeschichte der Thiere: Beobachtung und Reflexion. Gebrüdern Bornträger, Königsberg

    Google Scholar 

  • Bininda-Emonds ORP, Jeffery JE, Richardson MK (2003) Inverting the hourglass: quantitative evidence against the phylotypic stage in vertebrate development. Proc R Soc Lond Ser B Biol Sci 270(1513):341–346

    Article  Google Scholar 

  • Comte A, Roux J, Robinson-Rechavi M (2010) Molecular signaling in zebrafish development and the vertebrate phylotypic period. Evol Dev 12(2):144–156

    Article  CAS  Google Scholar 

  • Dearden PK, Wilson MJ, Sablan L, Osborne PW, Havler M, McNaughton E, Kimura K, Milshina NV, Hasselmann M, Gempe T, Schioett M, Brown SJ, Elsik CG, Holland PWH, Kadowaki T, Beye M (2006) Patterns of conservation and change in honey bee developmental genes. Genome Res 16(11):1376–1384

    Article  CAS  Google Scholar 

  • Domazet-Loso T, Tautz D (2010) A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468(7325):815–818

    Article  CAS  Google Scholar 

  • Drost H-G, Gabel A, Grosse I, Quint M (2015) Evidence for active maintenance of phylotranscriptomic hourglass patterns in animal and plant embryogenesis. Mol Biol Evol 32(5):1221–1231

    Article  CAS  Google Scholar 

  • Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development 1994(Suppl):135–142

    Google Scholar 

  • Elinson RP (1987) Change in developmental patterns: embryos of amphibians with large eggs. In: Raff RA, Raff EC (eds) Development as an evolutionary process. Alan R. Liss, New York, pp 1–21

    Google Scholar 

  • Emerald BS, Roy JK (1997) Homeotic transformation in Drosophila. Nature 389:684

    Article  CAS  Google Scholar 

  • Finklstein R, Perrimon N (1990) The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature 346:485–488

    Article  Google Scholar 

  • Galis F, Metz JA (2001) Testing the vulnerability of the phylotypic stage: on modularity and evolutionary conservation. J Exp Zool 291(2):195–204

    Article  CAS  Google Scholar 

  • Garcia-Fernàndez J (2004) Hox, ParaHox, ProtoHox: facts and guesses. Heredity 94:145–152

    Article  Google Scholar 

  • Gilbert SF (2006) Developmental biology, 8th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hall BK (1997) Phylotypic stage or phantom: is there a highly conserved embryonic stage in vertebrates? Trends Ecol Evol 12(12):461–463

    Article  CAS  Google Scholar 

  • Holland PWH (2012) Evolution of homeobox genes. Wiley Interdiscip Rev Dev Biol 2(1):31–45

    Article  Google Scholar 

  • Irie N, Kuratani S (2011) Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat Commun 2:248

    Article  Google Scholar 

  • Irie N, Sehara-Fujisawa A (2007) The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information. BMC Biol 5(1):1

    Article  Google Scholar 

  • Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, Ohler U, Bergman CM, Tomancak P (2010) Gene expression divergence recapitulates the developmental hourglass model. Nature 468:811–814

    Article  CAS  Google Scholar 

  • Levin M, Hashimshony T, Wagner F, Yanai I (2012) Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Dev Cell 22(5):1101–1108

    Article  CAS  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276(5688):565–570

    Article  CAS  Google Scholar 

  • Meckel JF (1811) Beyträge zur vergleichenden Anatomie. Carl Heinrich Reclam, Leipzig

    Google Scholar 

  • Peter IS, Davidson EH (2011) Evolution of gene regulatory networks controlling body plan development. Cell 144(6):970–985

    Article  CAS  Google Scholar 

  • Quint M, Drost H-G, Gabel A, Ullrich KK, Bönn M, Grosse I (2012) A transcriptomic hourglass in plant embryogenesis. Nature 490:98–101

    Article  CAS  Google Scholar 

  • Raff RA (1996) The shape of life: genes, development and the evolution of animal form. University of Chicago Press, Chicago

    Google Scholar 

  • Richardson MK (1995) Heterochrony and the phylotypic period. Dev Biol 172(2):412–421

    Article  CAS  Google Scholar 

  • Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM (1997) There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat Embryol 196(2):91–106

    Article  CAS  Google Scholar 

  • Roux J, Robinson-Rechavi M (2008) Developmental constraints on vertebrate genome evolution. PLoS Genet 4(12):e1000311

    Article  Google Scholar 

  • Sander K (1983) The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BC, Holder N, Wylie CC. (eds) Development and evolution: the sixth symposium of the British Society for Developmental Biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Santos ME, Le Bouquin A, Crumière AJJ, Khila A (2017) Taxon-restricted genes at the origin of a novel trait allowing access to a new environment. Science 358(6361):386–390

    Article  CAS  Google Scholar 

  • Serres, ERA (1842) Précis d’anatomie transcendante appliquée á la physiologie. Charles Gosselin, Paris

    Google Scholar 

  • Schep AN, Adryan B (2013) A comparative analysis of transcription factor expression during metazoan embryonic development. PLoS One 8(6):e66826

    Article  CAS  Google Scholar 

  • Seidel F (1960) Körpergrundgestalt und Keimstruktur. Eine Erörterung über die Grundlagen der vergleichenden und experimentellen Embryologie und deren Gültigkeit bei phylogenetischen Berlegungen. Zool Anz 164:245–305

    Google Scholar 

  • Small KM, Potter SS (1993) Homeotic transformations and limb defects in Hox A11 mutant mice. Genes Dev 7:2318–2328

    Article  CAS  Google Scholar 

  • Smith JM, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L (1985) Developmental constraints and evolution: a perspective from the Mountain Lake conference on development and evolution. Q Rev Biol 60(3):265–287

    Article  Google Scholar 

  • Wilson MJ, Dearden PK (2011) Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera). Development 138(16):3497–3507

    Article  CAS  Google Scholar 

  • Yanai I, Peshkin L, Jorgensen P, Kirschner MW (2011) Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. Dev Cell 20(4):483–496

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew G. Cridge .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cridge, A.G., Dearden, P.K., Brownfield, L.R. (2021). The Developmental Hourglass in the Evolution of Embryogenesis. In: Nuño de la Rosa, L., Müller, G.B. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-32979-6_185

Download citation

Publish with us

Policies and ethics