Skip to main content

Aerobic Capacity and Load of Activities of Daily Living After Stroke

  • Living reference work entry
  • First Online:
Handbook of Human Motion

Abstract

People after stroke often have a lower aerobic capacity than their healthy peers. On top of that, the aerobic load of daily activities such as walking is frequently (much) higher in this group. Often, these issues are investigated separately, but the actual impact on daily functioning can only be perceived when they are combined. A lower capacity and higher load will result in a high relative aerobic load of daily activities, i.e., people need to act at a high level of their maximal capacity. A high relative aerobic load may be a central cause of limitations in daily activities and participation as people either fatigue easily during tasks with a high load, have to slow their pace, or avoid these tasks all together. In this chapter, we review the current knowledge on aerobic capacity and aerobic load of daily activities in people after stroke. Moreover, we estimate the relative load experienced by stroke survivors performing these activities in an attempt to better understand the role of aerobic capacity and load in activity limitations in people after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ainsworth BE, Haskell WL, Herrmann SD et al (2011) 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43:1575–1581

    Article  Google Scholar 

  • Alzahrani MA, Dean CM, Ada L (2009) Ability to negotiate stairs predicts free-living physical activity in community-dwelling people with stroke: an observational study. Aust J Physiother 55:277–281. doi:10.1016/S0004-9514(09)70008-X

    Article  Google Scholar 

  • Baert I, Daly D, Dejaeger E et al (2012a) Evolution of cardiorespiratory fitness after stroke: a 1-year follow-up study. Influence of prestroke patients’ characteristics and stroke-related factors. Arch Phys Med Rehabil 93:669–676. doi:10.1016/j.apmr.2011.09.022

    Article  Google Scholar 

  • Baert I, Feys H, Daly D et al (2012b) Are patients 1 year post-stroke active enough to improve their physical health? Disabil Rehabil 34:574–580. doi:10.3109/09638288.2011.613513

    Article  Google Scholar 

  • Béjot Y, Bailly H, Durier J, Giroud M (2016) Epidemiology of stroke in Europe and trends for the 21st century. Presse Med 45:e391–e398. doi:10.1016/j.lpm.2016.10.003

    Article  Google Scholar 

  • Billinger SA, Coughenour E, MacKay-Lyons MJ, Ivey FM (2012) Reduced cardiorespiratory fitness after stroke: biological consequences and exercise-induced adaptations. Stroke Res Treat 2012:959120. doi:10.1155/2012/959120

    Google Scholar 

  • Bohannon RW, Andrews AW, Smith MB (1988) Rehabilitation goals of patients with hemiplegia. Int J Rehabil Res 11:181–184. doi:10.1097/00004356-198806000-00012

    Article  Google Scholar 

  • Bosch PR, Holzapfel S, Traustadottir T (2015) Feasibility of measuring ventilatory threshold in adults with stroke-induced hemiparesis: implications for exercise prescription. Arch Phys Med Rehabil 96:1779–1784. doi:10.1016/j.apmr.2015.04.023

    Article  Google Scholar 

  • Cress ME, Meyer M (2003) Maximal voluntary and functional performance needed for independence in adults aged 65 to 97 years. Phys Ther 83:37–48

    Google Scholar 

  • Danielsson A, Sunnerhagen KS (2000) Oxygen consumption during treadmill walking with and without body weight support in patients with hemiparesis after stroke and in healthy subjects. Arch Phys Med Rehabil 81:953–957. doi:10.1053/apmr.2000.6283

    Article  Google Scholar 

  • Delussu AS, Morone G, Iosa M et al (2014) Physiological responses and energy cost of walking on the gait trainer with and without body weight support in subacute stroke patients. J Neuroeng Rehabil 11:54. doi:10.1186/1743-0003-11-54

    Article  Google Scholar 

  • Detrembleur C, Dierick F, Stoquart G et al (2003) Energy cost, mechanical work, and efficiency of hemiparetic walking. Gait Posture 18:47–55. doi:10.1016/S0966-6362(02)00193-5

    Article  Google Scholar 

  • Eng JJ, Dawson AS, Chu KS (2004) Submaximal exercise in persons with stroke: test-retest reliability and concurrent validity with maximal oxygen consumption. Arch Phys Med Rehabil 85:113–118. doi:10.1016/S0003-9993(03)00436-2

    Article  Google Scholar 

  • Fujitani J, Ishikawa T, Akai M, Kakurai S (1999) Influence of daily activity on changes in physical fitness for people with post-stroke hemiplegia. Am J Phys Med Rehabil 78:540–544

    Article  Google Scholar 

  • Garber CE, Blissmer B, Deschenes MR et al (2011) Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359. doi:10.1249/MSS.0b013e318213fefb

    Article  Google Scholar 

  • Garby L, Astrup A (1987) The relationship between the respiratory quotient and the energy equivalent of oxygen during simultaneous glucose and lipid oxidation and lipogenesis. Acta Physiol Scand 129:443–444. doi:10.1111/j.1365-201X.1987.tb10613.x

    Article  Google Scholar 

  • Gäverth J, Parker R, MacKay-Lyons M (2015) Exercise stress testing after stroke or transient ischemic attack: a scoping review. Arch Phys Med Rehabil 96:1349–1359. doi:10.1016/j.apmr.2015.03.005

    Article  Google Scholar 

  • Glaister BC, Bernatz GC, Klute GK, Orendurff MS (2007) Video task analysis of turning during activities of daily living. Gait Posture 25:289–294. doi:10.1016/j.gaitpost.2006.04.003

    Article  Google Scholar 

  • Glymour MM, Berkman LF, Ertel KA et al (2007) Lesion characteristics, NIH stroke scale, and functional recovery after stroke. Am J Phys Med Rehabil 86:725–733. doi:10.1097/PHM.0b013e31813e0a32

    Article  Google Scholar 

  • Guazzi M, Arena R, Halle M et al (2016) 2016 focused update: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J 126:454–463. doi:10.1093/eurheartj/ehw 180

    Google Scholar 

  • Harries N, Loeppky JA, Shaheen S et al (2015) A stair-climbing test for measuring mechanical efficiency of ambulation in adults with chronic stroke. Disabil Rehabil 37:1004–1008. doi:10.3109/09638288.2014.948131

    Article  Google Scholar 

  • Houdijk H, ter Hoeve N, Nooijen C et al (2010) Energy expenditure of stroke patients during postural control tasks. Gait Posture 32:321–326. doi:10.1016/j.gaitpost.2010.05.016

  • IJmker T (2015) Balance control in human walking: an energetic perspective. Ipskamp Drukkers, Amsterdam

    Google Scholar 

  • IJmker T, Houdijk H, Lamoth CJ et al (2013) Effect of balance support on the energy cost of walking after stroke. Arch Phys Med Rehabil 94:2255–2261. doi:10.1016/j.apmr.2013.04.022

    Article  Google Scholar 

  • IJmker T, Lamoth CJ, Houdijk H et al (2014) Postural threat during walking: effects on energy cost and accompanying gait changes. J Neuroeng Rehabil 11:71. doi:10.1186/1743-0003-11-71

    Article  Google Scholar 

  • Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29:373–386

    Article  Google Scholar 

  • Jones AM, Poole DC (2005) Oxygen uptake dynamics: from muscle to mouth – an introduction to the symposium. Med Sci Sports Exerc 37:1542–1550. doi:10.1249/01.mss.0000177466.01232.7e

    Article  Google Scholar 

  • Jung T, Ozaki Y, Lai B, Vrongistinos K (2014) Comparison of energy expenditure between aquatic and overground treadmill walking in people post-stroke. Physiother Res Int 19:55–64. doi:10.1002/pri.1564

  • Kafri M, Myslinski MJ, Gade VK, Deutsch JE (2014) High metabolic cost and low energy expenditure for typical motor activities among individuals in the chronic phase after stroke. J Neurol Phys Ther 38:226–232. doi:10.1097/NPT.0000000000000053

    Article  Google Scholar 

  • Koopman ADM, Eken MM, Van Bezeij T et al (2013) Does clinical rehabilitationimpose suficient cardiorespiratory strain to improve aerobic fitness. J Rehabil Med 45:92–98. doi:10.2340/16501977-1072

    Article  Google Scholar 

  • Kramer S, Johnson L, Bernhardt J, Cumming T (2015) Energy expenditure and cost during walking after stroke: a systematic review. Arch Phys Med Rehabil 97:619–632.e1. doi:10.1016/j.apmr.2015.11.007

    Article  Google Scholar 

  • Lee CD, Folsom AR, Blair SN (2003) Physical activity and stroke risk: a meta-analysis. Stroke 34:2475–2481. doi:10.1161/01.STR.0000091843.02517.9D

    Article  Google Scholar 

  • Lord SE, McPherson K, McNaughton HK et al (2004) Community ambulation after stroke: how important and obtainable is it and what measures appear predictive? Arch Phys Med Rehabil 85:234–239. doi:10.1016/j.apmr.2003.05.002

    Article  Google Scholar 

  • MacKay-Lyons MJ, Makrides L (2002a) Exercise capacity early after stroke. Arch Phys Med Rehabil 83:1697–1702. doi:10.1053/apmr.2002.36395

    Article  Google Scholar 

  • MacKay-Lyons MJ, Makrides L (2002b) Cardiovascular stress during a contemporary stroke rehabilitation program: is the intensity adequate to induce a training effect? Arch Phys Med Rehabil 83:1378–1383. doi:10.1053/apmr.2002.35089

    Article  Google Scholar 

  • MacKay-Lyons MJ, Makrides L (2004) Longitudinal changes in exercise capacity after stroke. Arch Phys Med Rehabil 85:1608–1612. doi:10.1016/j.apmr.2004.01.027

    Article  Google Scholar 

  • Macko RF, Ivey FM, Forrester LW et al (2005) Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke 36:2206–2211. doi:10.1161/01.STR.0000181076.91805.89

    Article  Google Scholar 

  • McArdle W, Katch K, Katch V (2009) Exercise physiology: nutrition, energy, and human performance. Lippincott, Willams & Wilkins, Baltimore

    Google Scholar 

  • Mezzani A, Agostoni P, Cohen-Solal A et al (2009) Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: a report from the exercise physiology section of the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil 16:249–267. doi:10.1097/HJR.0b013e32832914c8

    Article  Google Scholar 

  • Michael KM, Allen JK, Macko RF (2005) Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness. Arch Phys Med Rehabil 86:1552–1556. doi:10.1016/j.apmr.2004.12.026

    Article  Google Scholar 

  • Milani RV, Lavie CJ, Mehra MR, Ventura HO (2006) Understanding the basics of cardiopulmonary exercise testing. Mayo Clin Proc 81:1603–1611. doi:10.4065/81.12.1603

    Article  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS et al (2016) Heart disease and stroke statistics-2016 update a report from the American Heart Association. Circulation 133(4):e38–e48

    Article  Google Scholar 

  • Novak AC, Brouwer B (2012) Strength and aerobic requirements during stair ambulation in persons with chronic stroke and healthy adults. Arch Phys Med Rehabil 93:683–689. doi:10.1016/j.apmr.2011.10.009

    Article  Google Scholar 

  • Orendurff MS, Schoen JA, Bernatz GC et al (2008) How humans walk: bout duration, steps per bout, and rest duration. J Rehabil Res Dev 45:1077–1089

    Article  Google Scholar 

  • Pinkstaff S, Peberdy MA, Kontos MC et al (2010) Quantifying exertion level during exercise stress testing using percentage of age-predicted maximal heart rate, rate pressure product, and perceived exertion. Mayo Clin Proc 85:1095–1100. doi:10.4065/mcp.2010.0357

    Article  Google Scholar 

  • Platts MM, Rafferty D, Paul L (2006) Metabolic cost of overground gait in younger stroke patients and healthy controls. Med Sci Sports Exerc 38:1041–1046. doi:10.1249/01.mss.0000222829.34111.9c

    Article  Google Scholar 

  • Polese JC, Scianni AA, Teixeira-Salmela LF (2015) Predictors of energy cost during stair ascent and descent in individuals with chronic stroke. J Phys Ther Sci 27:3739–3743. doi:10.1589/jpts.27.3739

    Article  Google Scholar 

  • Ralston HJ (1958) Energy-speed relation and optimal speed during level walking. Int Zeitschrift für Angew Physiol Einschl Arbeitsphysiologie 17:277–283. doi:10.1007/BF00698754

    Google Scholar 

  • Reisman DS, Rudolph KS, Farquhar WB (2009) Influence of speed on walking economy poststroke. Neurorehabil Neural Repair 23:529–534. doi:10.1177/1545968308328732

    Article  Google Scholar 

  • Saunders DH, Sanderson M, Brazzelli M et al (2016) Physical fitness training for stroke patients. Cochrane Database Syst Rev 3:CD003316. doi:10.1002/14651858.CD003316.pub6. www.cochranelibrary.com

    Google Scholar 

  • Slawinski J, Pradon D, Bensmail D et al (2014) Energy cost of obstacle crossing in stroke patients. Am J Phys Med Rehabil 93:1–7. doi:10.1097/PHM.0000000000000122

    Article  Google Scholar 

  • Smith AC, Saunders DH, Mead G (2012) Cardiorespiratory fitness after stroke: a systematic review. Int J Stroke 7:499–510. doi:10.1111/j.1747-4949.2012.00791.x

    Article  Google Scholar 

  • Tang A, Sibley KM, Thomas SG et al (2006) Maximal exercise test results in subacute stroke. Arch Phys Med Rehabil 87:1100–1105. doi:10.1016/j.apmr.2006.04.016

    Article  Google Scholar 

  • Thompson PD, Arena R, Riebe D, Pescatello LS (2013) ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription, ninth edition. Curr Sports Med Rep 12:215–217. doi:10.1249/JSR.0b013e31829a68cf

    Article  Google Scholar 

  • Tiozzo E, Youbi M, Dave K et al (2015) Aerobic, resistance, and cognitive exercise training poststroke. Stroke 46:2012–2016. doi:10.1161/STROKEAHA.114.006649

    Article  Google Scholar 

  • Tseng BY, Kluding P (2009) The relationship between fatigue, aerobic fitness, and motor control, in people with chronic stroke. A pilot study. J Geriatr Phys Ther 32:97–102. doi:10.1002/aur.1474.Replication

    Article  Google Scholar 

  • van de Port IGL, Kwakkel G, Van Wijk I, Lindeman E (2006) Susceptibility to deterioration of mobility long-term after stroke: a prospective cohort study. Stroke 37:167–171. doi:10.1161/01.STR.0000195180.69904.f2

    Article  Google Scholar 

  • van de Port IGL, Kwakkel G, Wittink H (2015) Systematic review of cardiopulmonary exercise testing post stroke: are we adhering to practice recommendations? J Rehabil Med 47:881–900. doi:10.2340/16501977-2031

    Article  Google Scholar 

  • Verschuren O, De Haan F, Mead G et al (2016) Characterizing energy expenditure during sedentary behavior after stroke. Arch Phys Med Rehabil 97:232–237. doi:10.1016/j.apmr.2015.09.006

    Article  Google Scholar 

  • Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema KE, Sun X-G, Whipp BJ (2012) Principles of exercise testing and interpretation: including pathophysiology and clinical applications (5th ed.). Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Waters RL, Mulroy S (1999) The energy expenditure of normal and pathologic gait. Gait Posture 9:207–231. doi:10.1016/S0966-6362(99)00009-0

    Article  Google Scholar 

  • Wezenberg D, Van Der Woude LH, Faber WX et al (2013) Relation between aerobic capacity and walking ability in older adults with a lower-limb amputation. Arch Phys Med Rehabil 94:1714–1720. doi:10.1016/j.apmr.2013.02.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.J. Blokland .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Blokland, I., IJmker, T., Houdijk, H. (2017). Aerobic Capacity and Load of Activities of Daily Living After Stroke. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics