Skip to main content

Cell Stress Responses to Pulsed Electric Fields

  • Living reference work entry
  • First Online:
Handbook of Electroporation

Abstract

Cells are often exposed to unfavorable conditions and stimuli, which are collectively referred to as stress. To adapt to stress, cells induce a set of reactions, called stress responses, that lead to suppression of translation initiation. Protein synthesis requires considerable amounts of energy and amino acids, and hence stress-induced translational suppression preserves cellular resources and serves as a mechanism for survival. This chapter is aimed at providing an overview of the stress responses induced by pulsed electric fields (PEFs). PEFs are utilized in a broad range of the life sciences, owing to their action on the cell membrane. Nanosecond PEFs (nsPEFs) generate small membrane pores that permeate small molecules, such as ions, and longer PEFs yield larger membrane pores suited for DNA transfection and tumor chemotherapy. Irrespective of the pulse width, PEFs are essentially deleterious to cellular homeostasis, because they compromise the membrane integrity and perturb the balance between intra- and extracellular molecules across the cell membrane. Recently, nsPEFs have been shown to induce stress responses in human and mouse cells. nsPEFs elicit stress-responsive signal transduction that comprises two protein kinases, namely, PERK and GCN2, and their substrate eIF2α, leading to translational suppression by eIF2α phosphorylation. nsPEFs affect another signal transduction that controls translation initiation by mTORC1-mediated 4E-BP1 phosphorylation. Collectively, accumulating evidence supports the concept of PEF-induced stress responses that appear to have profound effects on cellular functions such as gene expression and cell death induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell, 6th edn. Garland Publishing, New York

    Google Scholar 

  • Anderson BR, Kariko K, Weissman D (2013) Nucleofection induces transient eIF2alpha phosphorylation by GCN2 and PERK. Gene Ther 20(2):136–142. doi:10.1038/gt.2012.5

    Article  Google Scholar 

  • Baird TD, Wek RC (2012) Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 3(3):307–321. doi:10.3945/an.112.002113

    Article  Google Scholar 

  • Dang Do AN, Kimball SR, Cavener DR, Jefferson LS (2009) eIF2alpha kinases GCN2 and PERK modulate transcription and translation of distinct sets of mRNAs in mouse liver. Physiol Genomics 38(3):328–341. doi:10.1152/physiolgenomics.90396.2008

    Article  Google Scholar 

  • Frandsen SK, Gissel H, Hojman P, Tramm T, Eriksen J, Gehl J (2012) Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res 72(6):1336–1341. doi:10.1158/0008-5472.CAN-11-3782

    Article  Google Scholar 

  • Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, Korner I, Gan L, Chen S, Castro-Obregon S, Hammermann R, Wolf J, Muller-Hartmann H, Nix M, Siebenkotten G, Kraus G, Lun K (2004) New non-viral method for gene transfer into primary cells. Methods 33(2):151–163. doi:10.1016/j.ymeth.2003.11.009

    Article  Google Scholar 

  • Hamanaka RB, Bennett BS, Cullinan SB, Diehl JA (2005) PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell 16(12):5493–5501. doi:10.1091/mbc.E05-03-0268

    Article  Google Scholar 

  • Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25(18):1895–1908. doi:10.1101/gad.17420111

    Article  Google Scholar 

  • Koromilas AE (2015) Roles of the translation initiation factor eIF2alpha serine 51 phosphorylation in cancer formation and treatment. Biochim Biophys Acta 1849(7):871–880. doi:10.1016/j.bbagrm.2014.12.007

    Article  Google Scholar 

  • Lee YY, Cevallos RC, Jan E (2009) An upstream open reading frame regulates translation of GADD34 during cellular stresses that induce eIF2alpha phosphorylation. J Biol Chem 284(11):6661–6673. doi:10.1074/jbc.M806735200

    Article  Google Scholar 

  • Leprivier G, Rotblat B, Khan D, Jan E, Sorensen PH (2015) Stress-mediated translational control in cancer cells. Biochim Biophys Acta 1849(7):845–860. doi:10.1016/j.bbagrm.2014.11.002

    Article  Google Scholar 

  • Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318. doi:10.1038/nrm2672

    Article  Google Scholar 

  • Morotomi-Yano K, Akiyama H, Yano K (2011a) Nanosecond pulsed electric fields activate MAPK pathways in human cells. Arch Biochem Biophys 515(1–2):99–106. doi:10.1016/j.abb.2011.09.002 [pii] S0003-9861(11)00312-2

    Article  Google Scholar 

  • Morotomi-Yano K, Uemura Y, Katsuki S, Akiyama H, Yano K (2011b) Activation of the JNK pathway by nanosecond pulsed electric fields. Biochem Biophys Res Commun 408(3):471–476. doi:10.1016/j.bbrc.2011.04.056 [pii] S0006-291X(11)00641-3

    Article  Google Scholar 

  • Morotomi-Yano K, Akiyama H, Yano K (2012a) Nanosecond pulsed electric fields activate AMP-activated protein kinase: implications for calcium-mediated activation of cellular signaling. Biochem Biophys Res Commun 428(3):371–375. doi:10.1016/j.bbrc.2012.10.061

    Article  Google Scholar 

  • Morotomi-Yano K, Oyadomari S, Akiyama H, Yano K (2012b) Nanosecond pulsed electric fields act as a novel cellular stress that induces translational suppression accompanied by eIF2alpha phosphorylation and 4E-BP1 dephosphorylation. Exp Cell Res 318(14):1733–1744. doi:10.1016/j.yexcr.2012.04.016

    Article  Google Scholar 

  • Morotomi-Yano K, Akiyama H, Yano K (2013) Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells. Biochem Biophys Res Commun 438(3):557–562. doi:10.1016/j.bbrc.2013.07.083

    Article  Google Scholar 

  • Morotomi-Yano K, Akiyama H, Yano K (2014) Different involvement of extracellular calcium in two modes of cell death induced by nanosecond pulsed electric fields. Arch Biochem Biophys 555–556:47–54. doi:10.1016/j.abb.2014.05.020

    Article  Google Scholar 

  • Novoa I, Zeng H, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153(5):1011–1022

    Article  Google Scholar 

  • Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385(2):181–186. doi:10.1016/j.bbrc.2009.05.035 [pii] S0006-291X(09)00956-5

    Article  Google Scholar 

  • Rems L, Miklavcic D (2016) Tutorial: electroporation of cells in complex materials and tissue. J Appl Phys 119(20). Art. no. 201101. doi: 10.1063/1.4949264

    Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885. doi:10.1038/sj.embor.7400779

    Article  Google Scholar 

  • Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95(4):521–530

    Article  Google Scholar 

  • Vernier PT, Sun Y, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:37. doi:10.1186/1471-2121-7-37 [pii] 1471-2121-7-37

    Article  Google Scholar 

  • White JA, Blackmore PF, Schoenbach KH, Beebe SJ (2004) Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J Biol Chem 279(22):22964–22972. doi:10.1074/jbc.M311135200M311135200

    Article  Google Scholar 

  • Woehlbier U, Hetz C (2011) Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem Sci 36(6):329–337. doi:10.1016/j.tibs.2011.03.001

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 26350540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Yano .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Yano, Ki., Morotomi-Yano, K. (2016). Cell Stress Responses to Pulsed Electric Fields. In: Miklavcic, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-26779-1_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26779-1_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26779-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics