Skip to main content

Substrate Transport

  • Living reference work entry
  • First Online:
Cellular Ecophysiology of Microbe

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 159 Accesses

Abstract

Hydrocarbon compounds are known to passively diffuse across bacterial cytoplasmic membranes, and this may be the primary mechanism of hydrocarbon entry into most bacteria. The participation of active transport systems has been suggested in some bacterial strains, but solid evidence for active transport of hydrocarbons is currently lacking. In contrast, many active transport systems have been identified for the energy-dependent uptake of aromatic acids in both Gram-negative and Gram-positive bacteria. In addition, Gram-negative bacteria often harbor specific inducible outer membrane channels that allow entry of various aromatic hydrocarbon substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adebusuyi AA, Smith AY, Gray MR, Foght JM (2012) The EmhABC efflux pump decreases the efficiency of phenanthrene biodegradation by Pseudomonas fluorescens strain LP6a. Appl Microbiol Biotechnol 95:757–766

    Article  CAS  PubMed  Google Scholar 

  • Allende JL, Suarez M, Gallego M, Garrido-Pertierra A (1993) 4-Hydroxybenzoate uptake in Klebsiella pneumoniae is driven by electric potential. Arch Biochem Biophys 300:142–147

    Article  CAS  PubMed  Google Scholar 

  • Barnes MR, Duetz W, Williams PA (1997) A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon. J Bacteriol 179:6145–6153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman JN, Speer B, Feduik L, Hartline RA (1986) Naphthalene association and uptake in Pseudomonas putida. J Bacteriol 166:155–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168

    Article  CAS  PubMed  Google Scholar 

  • Black PN (1991) Primary sequence of Escherichia coli fadL gene encoding an outer membrane protein required for long-chain fatty acid transport. J Bacteriol 173:435–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugg T, Foght JM, Pickard MA, Gray MR (2000) Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl Environ Microbiol 66:5387–5392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H-K, Zylstra GJ (1999) Characterization of the phthalate permease OphD from Burkholderia cepacia ATCC 17616. J Bacteriol 181:6197–6199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhry MT, Huang Y, Shen X-H, Poetsch A, Jiang C-Y, Liu S-J (2007) Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum. Microbiology 153:857–865

    Article  CAS  PubMed  Google Scholar 

  • Chrzanowski L, Wick LY, Meulenkamp R, Kaestner M, Heipieper HJ (2009) Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT-T1E. Lett Appl Microbiol 48:756–762

    CAS  PubMed  Google Scholar 

  • Collier LS, Nichols NN, Neidle EL (1997) benK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. J Bacteriol 179:5943–5946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Argenio DA, Segura A, Coco WM, Bunz PV, Ornston LN (1999) The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by overlapping specificity of VanK. J Bacteriol 181:3505–3515

    PubMed  PubMed Central  Google Scholar 

  • Díaz E, Ferrández A, García JL (1998) Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J Bacteriol 180:2915–2923

    PubMed  PubMed Central  Google Scholar 

  • DiRusso CC, Black PN (2004) Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system. J Biol Chem 279:49563–49566

    Article  CAS  PubMed  Google Scholar 

  • Ditty JL, Harwood CS (1999) Conserved cytoplasmic loops are important for both the transport and chemotaxis functions of PcaK, a protein from Pseudomonas putida with 12-membrane-spanning regions. J Bacteriol 181:5068–5074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ditty JL, Harwood CS (2002) Charged amino acids conserved in the aromatic acid/H+ symporter family of permeases are required for 4-hydroxybenzoate transport by PcaK from Pseudomonas putida. J Bacteriol 184:1444–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton RW (1997) p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 179:3171–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton RW, Timmis KN (1986) Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204. J Bacteriol 168:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenewegen PEJ, Driessen AJM, Konigs WN, de Bont JAM (1990) Energy-dependent uptake of 4-chlorobenzoate in the corneyform bacterium NTB-1. J Bacteriol 172:419–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habe H, Kasuga K, Nojiri H, Yamane H, Omori T (1996) Analysis of cumene (isopropylbenzene) degradation genes from Pseudomonas fluorescens IP01. Appl Environ Microbiol 62:4471–4477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hara H, Stewart GR, Mohn WW (2010) Involvement of a novel ABC transporter and monoalkyl phthalate ester hydrolase in phthalate ester catabolism by Rhodococcus jostii RHA1. Appl Environ Microbiol 76:1516–1523

    Article  CAS  PubMed  Google Scholar 

  • Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:533–590

    Article  Google Scholar 

  • Harwood CS, Nichols NN, Kim M-K, Ditty JL, Parales RE (1994) Identification of the pcaRKF gene cluster from Pseudomonas putida: Involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176:6479–6488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hearn EM, Dennis JJ, Gray MR, Foght JM (2003) Identification and characterization of the emhABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a. J Bacteriol 185:6233–6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hearn EM, Patel DR, van den Berg B (2008) Outer-membrane transport of aromatic hydrocarbons as a first step in biodegradation. Proc Natl Acad Sci U S A 105:8601–8606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B (2009) Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature 458:367–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins SJ, Mandelstam J (1972) Evidence for induced synthesis of an active transport factor for mandelate in Pseudomonas putida. Biochem J 126:917–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong H, Patel DR, Tamm LK, van den Berg B (2006) The outer membrane protein OmpW forms an eight-stranded β-barrel with a hydrophobic channel. J Biol Chem 28:7568–7577

    Article  Google Scholar 

  • Hosaka M, Kamimura N, Toribami S, Mori K, Kasai D, Fukuda M, Masai E (2013) Novel tripartite aromatic acid transporter essential for terephthalate uptake in Comamonas sp. strain E6. Appl Environ Microbiol 79:6148–6155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahng H-Y, Byrne AM, Olsen RH, Kukor JJ (2000) Characterization and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. J Bacteriol 182:1232–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallimanis A, Frillingos S, Drainas C, Koukkou AI (2007) Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Appl Microbiol Biotechnol 76:709–717

    Article  CAS  PubMed  Google Scholar 

  • Kasai Y, Inoue J, Harayama S (2001) The TOL plasmid pWWO xylN gene product from Pseudomonas putida is involved in m-xylene uptake. J Bacteriol 183:6662–6666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieboom J, Dennis JJ, de Bont JA, Zylstra GJ (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91

    Article  CAS  PubMed  Google Scholar 

  • Kim IS, Foght JM, Gray MR (2002) Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Biotechnol Bioeng 80:650–659

    Article  CAS  PubMed  Google Scholar 

  • Kiran GS, Ninawe AS, Lipton AN, Pandian V, Selvin J (2016) Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit Rev Biotechnol 36:399–415

    PubMed  Google Scholar 

  • Kitagawa W, Miyauchi K, Masai E, Fukuda M (2001) Cloning and characterization of benzoate catabolic genes in the Gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. J Bacteriol 183:6598–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa W, Takami S, Miyauchi K, Masai E, Kamagata Y, Tiedje JM, Fukuda M (2002) Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. J Bacteriol 184:509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau PCK, Bergeron H, Labbe D, Wang Y, Brousseau R, Gibson DT (1994) Sequence and expression of the todGIH genes involved in the last three steps of toluene degradation by Pseudomonas putida F1. Gene 146:7–13

    Article  CAS  PubMed  Google Scholar 

  • Leveau JH, Zehnder AJ, van der Meer JR (1998) The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J Bacteriol 180:2237–2243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang H, Hua F, Su M, Zhao Y (2014) Trans-membrane transport of fluoranthene by Rhodococcus sp. BAP-1 and optimization of uptake process. Bioresour Technol 155:213–219

    Article  CAS  PubMed  Google Scholar 

  • Luu RA, Kootstra JD, Nesteryuk V, Brunton C, Parales JV, Ditty JL, Parales RE (2015) Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 96:134–147

    Article  CAS  PubMed  Google Scholar 

  • Master ER, McKinlay JJ, Stewart GR, Mohn WW (2005) Biphenyl uptake by psychrotolerant Pseudomonas sp. strain Cam-1 and mesophilic Burkholderia sp. strain LB400. Can J Microbiol 51:399–404

    Article  CAS  PubMed  Google Scholar 

  • Menn F-M, Zylstra GJ, Gibson DT (1991) Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1. Gene 104:91–94

    Article  CAS  PubMed  Google Scholar 

  • Miyata N, Iwahori K, Foght JM, Gray MR (2004) Saturable, energy-dependent uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJGII-135. Appl Environ Microbiol 70:363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney A, O’Leary ND, Dobson AD (2006) Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3. Appl Environ Microbiol 72:1302–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neher TM, Lueking DR (2009) Pseudomonas fluorescens ompW: plasmid localization and requirement for naphthalene uptake. Can J Microbiol 55:553–563

    Article  CAS  PubMed  Google Scholar 

  • Nichols NN, Harwood CS (1997) PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol 179:5056–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability. Microbiol Mol Biol Rev 67:593–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda K, Watanabe K, Maruhashi K (2003) Isolation of the Pseudomonas aeruginosa gene affecting uptake of dibenzothiophene in n-tetradecane. J Biosci Bioeng 95:504–511

    Article  CAS  PubMed  Google Scholar 

  • Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen RH, Kukor JJ, Kaphammer B (1994) A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1. J Bacteriol 176:3749–3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Rev 62:1–34

    CAS  Google Scholar 

  • Phoenix P, Keane A, Patel A, Bergeron H, Ghoshal S, Lau PCK (2003) Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environ Microbiol 12:1309–1327

    Article  Google Scholar 

  • Prieto MA, García JL (1997) Identification of the 4-hydroxyphenylacetate transport gene of Escherichia coli W: construction of a highly sensitive cellular biosensor. FEBS Lett 414:293–297

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Duque E, Godoy P, Segura A (1998) Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 180:3323–3329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39:555–566

    Article  PubMed  Google Scholar 

  • Ramos-Gonzalez MI, Olson M, Gatenby AA, Mosqueda G, Manzanera M, Campos MJ, Vichez S, Ramos JL (2002) Cross-regulation between a novel two-component signal transduction system for catabolism of toluene in Pseudomonas mendocina and the TodST system from Pseudomonas putida. J Bacteriol 184:7062–7067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues AC, Wuertz S, Brito AG, Melo LF (2005) Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: kinetics and physiological aspects. Biotechnol Bioeng 90:281–289

    Article  CAS  PubMed  Google Scholar 

  • Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Ramos JL, Segura A (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183:3967–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Silva MJ, Méndez V, Agulló L, Seeger M (2013) Genomic and functional analyses of the gentisate and protocatechuate ring-cleavage pathways and related 3-hydroxybenzoate and 4-hydroxybenzoate peripheral pathways in Burkholderia xenovorans LB400. PLoS One 8:e56038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saier MH Jr (2006) Transport classification database. http://www.tcdb.org/

  • Saier MH Jr, Paulsen IT (2001) Phylogeny of multidrug transporters. Semin Cell Dev Biol 12:205–213

    Google Scholar 

  • Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279

    Google Scholar 

  • Scott CC, Finnerty WR (1976) Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. J Bacteriol 127:481–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty A, Hickey WJ (2014) Effects of outer membrane vesicle formation, surface-layer production and nanopod development on the metabolism of phenanthrene by Delftia acidovorans Cs1-4. PLoS One 9:e92143

    Article  PubMed  PubMed Central  Google Scholar 

  • Shetty A, Chen S, Tocheva EI, Jensen GJ, Hickey WJ (2011) Nanopods: a new bacterial structure and mechanism for deployment of outer membrane vesicles. PLoS One 6:e20725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikkema J, De Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan K, Chang C, Cuff M, Osipiuk J, Landorf E, Mack JC, Zerbs S, Joachimiak A, Collart FR (2013) Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-Coumaric acid and related aromatic acids. Proteins 81:1709–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Beilen JB, Eggink G, Enequist H, Bos R, Witholt B (1992) DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans. Mol Microbiol 6:3121–3136

    Article  PubMed  Google Scholar 

  • van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174

    Article  PubMed  Google Scholar 

  • van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    Article  PubMed  Google Scholar 

  • van den Berg B (2005) The FadL family: unusual transporters for unusual substrates. Curr Opin Struct Biol 15:401–407

    Article  PubMed  Google Scholar 

  • van den Berg B (2010a) Bacterial cleanup: lateral diffusion of hydrophobic molecules through protein channel walls. Biomol Concepts 1:263–270

    PubMed  Google Scholar 

  • van den Berg B (2010b) Going forward laterally: transmembrane passage of hydrophobic molecules through protein channel walls. Chembiochem 11:1339–1343

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Berg B, Black PN, Clemons WMJ, Rapoport TA (2004) Crystal structure of the long-chain fatty acid transporter FadL. Science 304:1506–1509

    Article  PubMed  Google Scholar 

  • Vaneechoutte M, Young DM, Ornston LN, De Baere T, Nemec A, Van Der Reijden T, Carr E, Tjernberg I, Dijkshoorn L (2006) Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi. Appl Environ Microbiol 72:932–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkering F, Breure AM, Sterkenberg A, van Andel JG (1992) Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 36:548–552

    Article  CAS  Google Scholar 

  • Wang Y, Rawlings M, Gibson DT, Labbé D, Bergeron H, Brousseau R, Lau PCK (1995) Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol Gen Genet 246:570–579

    Article  CAS  PubMed  Google Scholar 

  • Whitman BE, Lueking DR, Mihelcic JR (1998) Naphthalene uptake by a Pseudomonas fluorescens isolate. Can J Microbiol 44:1086–1093

    Article  CAS  PubMed  Google Scholar 

  • Wick LY, de Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385

    Article  CAS  PubMed  Google Scholar 

  • Wodzinski RS, Bertolini D (1972) Physical state in which naphthalene and bibenzyl are utilized by bacteria. Appl Microbiol 23:1077–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wodzinski RS, Coyle JE (1974) Physical state of phenanthrene for utilization by bacteria. Appl Microbiol 27:1081–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Gao X, Wang S-H, Liu H, Williams PA, Zhou N-Y (2012a) MhbT is a specific transporter for 3-hydroxybenzoate uptake by Gram-negative bacteria. Appl Environ Microbiol 78:6113–6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wang S-H, Chao H-J, Liu S-J, Zhou N-Y (2012b) Biochemical and molecular characterization of the gentisate transporter GenK in Corynebacterium glutamicum. PLoS One 7:e38701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Chen B, Chao H-J, Zhou N-Y (2013) mhpT encodes an active transporter involved in 3-(3-hydroxyphenyl)propionate catabolism by Escherichia coli K-12. Appl Environ Microbiol 79:6362–6368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zylstra GJ, Gibson DT (1989) Toluene degradation by Pseudomonas putida F1: nucleotide sequence of the todC1C2BADE genes and their expression in E. coli. J Biol Chem 264:14940–14946

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the Parales and Ditty Laboratories has been supported by the National Science Foundation (awards MCB 0627248 (REP), MCB 0919930 (REP and JLD), MCB 1022362 (REP)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca E. Parales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Parales, R.E., Ditty, J.L. (2017). Substrate Transport. In: Krell, T. (eds) Cellular Ecophysiology of Microbe. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-20796-4_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20796-4_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20796-4

  • Online ISBN: 978-3-319-20796-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics