Skip to main content

4-Dimethylaminophenol

  • Living reference work entry
  • First Online:
Critical Care Toxicology
  • 505 Accesses

Abstract

In normal intermediary metabolism, six adenosine triphosphates (ATPs) are created by passing two pairs of electrons down the respiratory chain from two reduced nicotinamide adenine dinucleotides to molecular oxygen. In the course of this mitochondrial ATP synthesis, the iron in cytochrome aa 3, the terminal oxidative respiratory enzyme, is oxidized from the ferrous (Fe2+) to the ferric (Fe3+) form. Cyanide has a special affinity for the ferric heme, blocking oxygen consumption and oxidative phosphorylation. Blood contains a great quantity of ferrous heme within hemoglobin that can be converted to the ferric form (methemoglobin) by the use of methemoglobin-generating agents. If methemoglobin is formed in excess of total body cytochrome aa 3, the cyanide ion binds to methemoglobin, restoring normal cellular respiration (Fig. 1).

Dr. Zilker and Dr. Eyer are retired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chen KK, Rose CL, Clowes GHA. Amyl nitrite and cyanide poisoning. JAMA. 1933;100:1920–2.

    Article  Google Scholar 

  2. Weger N. Aminophenols as antidotes to prussic acid. Arch Toxicol. 1969;24:49–50.

    Google Scholar 

  3. Hall AH, Rumack BH. Clinical toxicology of cyanide. Ann Emerg Med. 1986;15:1067–74.

    Article  CAS  PubMed  Google Scholar 

  4. Bastian G, Mercker H. The efficacy of amyl nitrite inhalation in the treatment of cyanide poisoning. Naunyn-Schmiedeberg Arch Exp Pathol. 1959;237:285–95.

    CAS  Google Scholar 

  5. McKiernan MJC. Emergency treatment of cyanide poisoning. Lancet. 1980;2:86.

    Article  CAS  PubMed  Google Scholar 

  6. Tyrer FH. Treatment of cyanide poisoning. J Soc Occup Med. 1981;31:65–6.

    Article  CAS  PubMed  Google Scholar 

  7. Mushett CW, Kelly KL, Boxer EG, Rickards JC. Antidotal efficacy of vitamin B12a (hydroxocobalamin) in experimental cyanide poisoning. Proc Soc Exp Biol Med. 1952;81:234–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kiese M, Weger N. Formation of ferrihemoglobin with aminophenols in the human for the treatment of cyanide poisoning. Eur J Pharmacol. 1969;7:97–105.

    Article  CAS  PubMed  Google Scholar 

  9. Daunderer H, Theml H, Weger N. Treatment of prussic acid poisoning with 4-dimethylaminophenol (4-DMAP). Med Klin. 1974;69:1626–31.

    CAS  PubMed  Google Scholar 

  10. Werner H. Die Behandlung von Vergiftungen mit Blausäure, ihrer Salze und Derivate mit 4-Dimethylaminophenol. Thesis München; 1979.

    Google Scholar 

  11. Zilker T, Felgenhauer N. 4-DMAP as cyanide antidote: its efficacy and side effects in human poisoning. Clin Toxicol. 2000;38:217.

    Google Scholar 

  12. Van Dijk A, Glerum JH, Van Heijst CNP, et al. Clinical evaluation of the cyanide antagonist 4-DMAP in a lethal cyanide poisoning case. Vet Hum Toxicol. 1987;29 Suppl 2:38–9.

    Google Scholar 

  13. Klimmek R, Krettek C, Szinicz L, et al. Effects and biotransformation of 4-dimethylaminophenol in man and dog. Arch Toxicol. 1983;53:275–88.

    Article  CAS  PubMed  Google Scholar 

  14. Kiese M. Methemoglobinemia: a comprehensive treatise. Cleveland: CRC Press; 1974.

    Google Scholar 

  15. Paulet G. Valeur des sels organiques de cobalt dans le traitement de l’intoxication cyanhydrique. C R Soc Biol. 1957;151:1932–5.

    CAS  Google Scholar 

  16. Klimmek R, Fladerer H, Weger M. Circulation, respiration, and blood homeostasis in cyanide-poisoned dogs after treatment with 4-dimethylaminophenol or cobalt compounds. Arch Toxicol. 1979;43:121–33.

    Article  CAS  PubMed  Google Scholar 

  17. Klimmek R, Fladerer H, Szinicz L, et al. Effects of 4-dimethylaminophenol and Co2 EDTA on circulation, respiration, and blood homeostasis in dogs. Arch Toxicol. 1979;42:75–84.

    Article  CAS  PubMed  Google Scholar 

  18. Klimmek R, Roddewig C, Weger N. Effects of 4-dimethylaminophenol on blood flow and blood gases in the brain. Res Exp Med. 1981;179:141–51.

    Article  CAS  Google Scholar 

  19. Eyer P, Kiese M, Lipowsky G, Weger N. Metabolism of 4-dimethylaminophenol. Arch Pharmacol. 1971;270(Suppl R):29.

    Google Scholar 

  20. Eyer P, Gaber H. Biotransformation of 4-dimethylaminophenol in the dog. Biochem Pharmacol. 1978;27:2215–21.

    Article  CAS  PubMed  Google Scholar 

  21. Eyer P, Lengfelder E. Radical formation during autoxidation of 4-dimethylaminophenol and some properties of the reaction products. Biochem Pharmacol. 1984;33:1005–13.

    Article  CAS  PubMed  Google Scholar 

  22. Eyer P, Lierheimer E, Strosar M. Site and mechanism of covalent binding of 4-dimethylaminophenol to human hemoglobin, and its implications to the functional properties. Mol Pharmacol. 1983;24:282–90.

    CAS  PubMed  Google Scholar 

  23. Ludwig E, Eyer P. Oxidation versus addition reactions of glutathione during the interactions with quinoid thioethers of 4-(dimethylamino)phenol. Chem Res Toxicol. 1995;8:302–9.

    Article  CAS  PubMed  Google Scholar 

  24. Eckert KG, Eyer P. Formation and transport of xenobiotic glutathione-S-conjugates in red cells. Biochem Pharmacol. 1986;35:325–9.

    Article  CAS  PubMed  Google Scholar 

  25. Jancso P, Szinicz L, Eyer P. Biotransformation of 4-dimethylaminophenol in man. Arch Toxicol. 1981;47:39–45.

    CAS  PubMed  Google Scholar 

  26. Eyer P, Kampffmeyer H. Biotransformation of 4-dimethylaminophenol in the isolated perfused rat liver. Biochem Pharmacol. 1978;27:2223–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kiese M, Weger N. The treatment of experimental cyanide poisoning by ferrihemoglobin formation. Arch Toxicol. 1965;21:89–100.

    CAS  Google Scholar 

  28. Marrs TC, Scawin J, Swanson DW. The acute intravenous and oral toxicity in mice, rats and guinea pigs of 4-dimethylaminophenol (DMAP) and its effects on hematological variables. Toxicology. 1984;31:165–73.

    Article  CAS  PubMed  Google Scholar 

  29. Kiese M, Szinicz L, Thiel N, et al. Ferrihemoglobin and kidney lesions in rats produced by 4-aminophenol or 4-dimethylaminophenol. Arch Toxicol. 1975;34:337–40.

    Article  CAS  PubMed  Google Scholar 

  30. Weger N. Cyanide poisoning and therapy. Wehrmed Monatschr. 1975;191:6–11.

    Google Scholar 

  31. Elbers FR, Kampffmeyer HG, Rabes H. Effects and metabolic pathway of 4-dimethylaminophenol during kidney perfusion. Xenobiotica. 1980;10:621–32.

    Article  CAS  PubMed  Google Scholar 

  32. Jakobs K. Report on experience with the administration of 4-DMAP in severe prussic acid poisoning: consequences for medical practice. Zentralbl Arbeitsmed. 1984;34:274–7.

    Google Scholar 

  33. Van Heijst ANP, Douze JMC, Van Kesteren RG, et al. Therapeutic problems in cyanide poisoning. Clin Toxicol. 1987;25:383–98.

    Google Scholar 

  34. Zilker T, Schweizer W. Zyankali-Intoxikation. Der Notarzt. 1987;3:59–60.

    Google Scholar 

  35. Eyer P, Hertle H, Kiese M, Klein G. Kinetics of ferrihemoglobin formation by some reducing agents, and the role of hydrogen peroxide. Mol Pharmacol. 1975;11:326–34.

    CAS  PubMed  Google Scholar 

  36. Kiese M, Lörcher W, Weger N, Zierer A. Comparative studies on the effects of toluidine blue and methylene blue on the reduction of ferrihemoglobin in man and dog. Eur J Clin Pharmacol. 1972;4:115–8.

    Article  CAS  PubMed  Google Scholar 

  37. Efficacy and safety of antidotes for acute poisoning by cyanides. Vol. I, Technical Report Nr. 121. ECETOC AISBL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Zilker or Peter Eyer .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I.

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1.

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2.

    Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group.

  4. II-3.

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III.

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Zilker, T., Eyer, P. (2016). 4-Dimethylaminophenol. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_181-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_181-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics