Skip to main content

Characterization of Sol-Gel Thin-Film Waveguides

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Integrated optics is a branch of photonics allowing sophisticated and innovative solutions to many problems. As glasses exhibit many useful characteristics such as relatively low cost, excellent transparency, high threshold to optical damage, and easiness of doping with active and functional atoms and oxides, glass optical waveguides represent one of the simplest and most attractive building blocks over which photonic integrated circuits can be fabricated.

Sol–gel technology has proved to be suitable to produce high-quality optical waveguides by single- and multilayer deposition. An accurate characterization of the produced waveguides is necessary in order to establish a correlation between the final properties and the parameters of the deposition process and hence to optimize the design and fabrication of the waveguides. Here a brief overview of the measurement techniques for sol–gel passive and active waveguides is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen SD, Garmire E, Bass M, Packer B. Calorimetric measurement of LiNbO3 waveguide absorption losses. Appl Phys Lett. 1979;34:435–7.

    Article  Google Scholar 

  • Almeida RM. Sol–gel planar waveguides for integrated optics. J Non-Cryst Solids. 1999;259:176–81.

    Article  Google Scholar 

  • Almeida RM, Vasconcelos HC, Gonçalves MC, Santos LF. XPS and NEXAFS studies of rare-earth doped amorphous sol–gel films. J Non-Cryst Solids. 1998;232–234:65–71.

    Article  Google Scholar 

  • Alombert-Goget G, Armellini C, Berneschi S, Chiappini A, Chiasera A, Ferrari M, Guddala S, Moser E, Pelli S, Rao DN, Righini GC. Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides. Opt Mater. 2010;33:227–30.

    Article  Google Scholar 

  • Ames GH, Hall DG. Attenuation in planar optical waveguides: comparison of theory and experiment. IEEE J Quantum Electron. 1983;QE-19:845–53.

    Article  Google Scholar 

  • Bahtat A, Bouazaoui M, Bahtat M, Garapon C, Jacquier B, Mugnier J. Up-conversion fluorescence spectroscopy in Er3+:TiO2 planar waveguides prepared by a sol–gel process. J Non-Cryst Solids. 1996;202:16–22.

    Article  Google Scholar 

  • Biswas PK. Sol–gel thin films for optics and photonics. J Sol–gel Sci Technol. 2011;59:456–74.

    Article  Google Scholar 

  • Boccara AC, Fournier D, Jackson W, Amer NM. Sensitive photothermal deflection technique for measuring absorption in optically thin media. Opt Lett. 1980;5:377–9.

    Article  Google Scholar 

  • Born M, Wolf E. Principles of optics. 6th ed. Oxford: Pergamon Press; 1980. p. 36–51.

    Google Scholar 

  • Bornholdt C, Krauser J, Nolting H-P. Novel simple method for determination of refractive index of optical monomode slab waveguides. Electron Lett. 1985;21:706–8.

    Article  Google Scholar 

  • Brandt GB. In-plane scattering in glass and niobium oxide waveguides. Opt Eng. 1981;20:150–2.

    Article  Google Scholar 

  • Brinker CJ, Sehgal R, Hietala SL, Deshpande R, Smith DM, Loy D. Ashley CS sol–gel strategies for controlled porosity inorganic materials. J Membr Sci. 1994;94:85–102.

    Article  Google Scholar 

  • Brusatin G, Guglielmi M, Innocenzi P, Martucci A, Battglin G, Pelli S, Righini G. Microstructural and optical properties of sol–gel silica-titania waveguides. J Non-Cryst Solids. 1997;220:202–9.

    Article  Google Scholar 

  • Cheng SD, Zhou Y, Kam CH, Lam YL, Chan YC, Que WX, Gan WS. Sol–gel derived thin films of LiTaO3 on SiO2/Si substrates for optical waveguide applications. Fiber Integr Opt. 2001;20:45–52.

    Article  Google Scholar 

  • De Pablos-Martin A, Ferrari M, Pascual MJ, Righini GC. Glass-ceramics: a class of nanostructured materials for photonics. Riv Nuovo Cimento. 2015;38:311–69.

    Google Scholar 

  • Delâge A, Janz S, Lamontagne B, Bogdanov A, Dalacu D, Xu D-X, Yap KP. Monolithically integrated asymmetric graded and step-index couplers for microphotonic waveguides. Opt Express. 2006;14:148–61.

    Article  Google Scholar 

  • Espinal L. Porosity and its measurement. In: Kaufmann EN, editor. Characterization of materials. Hoboken: Wiley; 2012.

    Google Scholar 

  • FED-STD-1037C. Telecommunications: glossary of telecommunication terms. Hypertext version 2000. 2000. http://www.its.bldrdoc.gov/fs-1037/

  • Fernandes VR, Vicente CMS, Wada N, André PS, Ferreira RAS. Multi-objective genetic algorithm applied to spectroscopic ellipsometry of organic–inorganic hybrid planar waveguides. Opt Express. 2010;18:16580–6.

    Article  Google Scholar 

  • Goell JE, Standley RD. Sputtered glass waveguide for integrated optical circuits. Bell Syst Tech J. 1969;48:3445–8.

    Article  Google Scholar 

  • Gonçalves RR, Carturan G, Zampedri L, Ferrari M, Montagna M, Chiasera A, Righini GC, Pelli S, Ribeiro JL, Messaddeq Y. Sol–gel Er-doped SiO2–HfO2 planar waveguides: a viable system for 1.5 μm application. Appl Phys Lett. 2002;81:28–30.

    Article  Google Scholar 

  • Gottlieb M, Brandt GB, Conroy JJ. Out-of-plane scattering in optical waveguides. IEEE Trans Circuits Syst. 1979;CAS-26:1029–35.

    Article  Google Scholar 

  • Hacskaylo M. Determination of the refractive index of thin dielectric films. J Opt Soc Am. 1964;54:198–203.

    Article  Google Scholar 

  • Hall DG. In-plane scattering in planar optical waveguides: refractive-index fluctuations and surface roughness. J Opt Soc Am. 1985;2:747–52.

    Article  Google Scholar 

  • Heavens OS. Measurement of optical constants of thin films. In: Physics of thin films, vol. 2. New York: Academic; 1964. p. 193–238.

    Google Scholar 

  • Herrmann PP. Determination of thickness, refractive index, and dispersion of waveguiding thin films with an Abbe refractometer. Appl Optics. 1980;19:3261–2.

    Article  Google Scholar 

  • Hickernell RK, Larson DR, Phelan Jr RJ, Larson LE. Waveguide loss measurement using photothermal deflection. Appl Optics. 1988;27:2636–8.

    Article  Google Scholar 

  • Hunsperger RG. Integrated optics: theory and technology. 4th ed. Berlin: Springer; 1995.

    Book  Google Scholar 

  • Imai M, Ohtsuka Y, Koseki M. Scattering pattern measurement and analysis of sputtered-glass optical waveguides for integrated optics. IEEE J Quantum Electron. 1982;QE-18:789–95.

    Article  Google Scholar 

  • Kang E-S, Lee T-H, Baea B-S. Measurement of the thermo-optic coefficients in sol–gel derived inorganic–organic hybrid material films. Appl Phys Lett. 2002;81:1438–40.

    Article  Google Scholar 

  • Kang E-S, Kim W-S, Kim K-S, Bae B-S. Modification of thermo-optic characteristics of sol–gel inorganic–organic hybrid materials. J Sol–gel Sci Technol. 2004;32:277–80.

    Article  Google Scholar 

  • Kasap S, Capper P, editors. Springer handbook of electronic and photonic materials. Berlin: Springer Science & Business Media; 2007.

    Google Scholar 

  • King RJ, Downs MJ. Ellipsometry applied to films on dielectric substrates. Surf Sci. 1969;16:288–302.

    Article  Google Scholar 

  • Klotz M, Ayral A, Guizard C, Cot L. Tailoring of the porosity in sol–gel derived silica thin layers. Bull Korean Chem Soc. 1999;20:879–84.

    Google Scholar 

  • Kuznetsov M, Haus HA. Radiation loss in dielectric waveguide structures by the volume current method. IEEE J Quantum Electron. 1983;QE-19:1505–14.

    Article  Google Scholar 

  • Le Luyer C, García-Murillo A, Bernstein E, Mugnier J. Waveguide Raman spectroscopy of sol–gel Gd2O3 thin films. J Raman Spectrosc. 2003;34:234–9.

    Article  Google Scholar 

  • Lifante G. Integrated photonics: fundamentals‬. Hoboken: Wiley; 2003.

    Book  Google Scholar 

  • Liu L, Zhang J, Zhang C, Wang S, Jin C, Chen Y, Chen K, Xiang T, Shi Y. Silicon waveguide grating coupler for perfectly vertical fiber based on a tilted membrane structure. Opt Lett. 2016;41:820–3.

    Article  Google Scholar 

  • Lukowiak A, Chiappini A, Chiasera A, Ristic D, Vasilchenko I, Armellini C, Carpentiero A, Varas S, Speranza G, Taccheo S, Pelli S, Battisha IK, Righini GC, Strek W, Ferrari M. Sol–gel-derived photonic structures handling erbium ions luminescence. Opt Quant Electron. 2015;47:117–24.

    Article  Google Scholar 

  • McCrackin FL, Passaglia E, Stromberg RR, Steinberg HL. Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry. J Res Natl Bur Stand. 1963;67A:363–77.

    Article  Google Scholar 

  • McDonagh C, Bowe P, Mongey K, MacCraith BD. Characterisation of porosity and sensor response times of sol–gel-derived thin films for oxygen sensor applications. J Non-Cryst Solids. 2002;306:138–48.

    Article  Google Scholar 

  • Najafi SI. Introduction to glass integrated optics. Norwood: Artech House; 1992.

    Google Scholar 

  • Nishihara H, Haruna M, Suhara T. Optical integrated circuits. New York: McGraw-Hill; 1989.

    Google Scholar 

  • Nourshargh N, Starr EM, Fox NI, Jones SG. Simple technique for measuring attenuation of integrated optical waveguides. Electron Lett. 1985;21:818–20.

    Article  Google Scholar 

  • Novack A, Streshinsky M, Ding R, Liu Y, Lim AE-J, Lo G-Q, Baehr-Jones T, Hochberg M. Progress in silicon platforms for integrated optics. Nanophot. 2014;3:205–14.

    Article  Google Scholar 

  • Okamoto K. Progress and technical challenge for planar waveguide devices: silica and silicon waveguides. Laser Photonics Rev. 2012;6:14–23.

    Article  Google Scholar 

  • Okamura Y, Yoshinaka S, Yamamoto S. Measuring mode propagation losses of integrated optical waveguides: a simple method. Appl Optics. 1983;22:3892–4.

    Article  Google Scholar 

  • Okamura Y, Sato S, Yamamoto S. Simple method of measuring propagation properties of integrated optical waveguides: an improvement. Appl Optics. 1985;24:57–60.

    Article  Google Scholar 

  • Pelli S, Righini GC, Scaglione A, Yip G-L, Noutsious P, Bräuer A, Dannberg P, Liñares J, Gómez-Reino C, Mazzi G, Gonella F, Rimet R, Schanen I. Testing of optical waveguides (TOW) cooperative project: preliminary results of the characterisation of K-exchanged waveguides. SPIE Proc. 1994;2212:126–31.

    Article  Google Scholar 

  • Pelli S, Righini GC, Pereira MB, Horowitz F. Graded-index profile analysis from m-line, DNS and EDS measurements of glass waveguides produced by K+/Ag+ ion-exchange combinations. SPIE Proc. 2002;4640:9–14.

    Article  Google Scholar 

  • Rams J, Cabrera JM. A far-field method for characterizing thin planar optical waveguides. Opt Commun. 1997;139:205–8.

    Article  Google Scholar 

  • Ramsden JJ. Porosity of pyrolysed sol–gel waveguides. J Mater Chem. 1994;4:1263–5.

    Article  Google Scholar 

  • Ribeiro SJL, Messaddeq Y, Gonçalves RR, Ferrari M, Montagna M, Aegerter MA. Low optical loss planar waveguides prepared in an organic–inorganic hybrid system. Appl Phys Lett. 2000;77:3502–4.

    Article  Google Scholar 

  • Ricco AJ, Frye GC, Martin SJ. Determination of BET surface areas of porous thin films using surface acoustic wave devices. Langmuir. 1989;5:273–6.

    Article  Google Scholar 

  • Ristic D, Guddala S, Chiappini A, Alombert Goget G, Lukowiak A, Ramponi R, Righini GC, Ivanda M, Ferrari M. Thermo optical coefficient of tin-oxide films measured by ellipsometry. J Appl Phys. 2015;118:215306.

    Article  Google Scholar 

  • Rogoziński R, Tyszkiewicz C, Karasiński P, Izydorczyk W. Planar waveguide sensor of ammonia. Proc SPIE. 2015;9816:98160T.

    Google Scholar 

  • Ruiz Urbieta M, Sparrow EM, Eckert RG. Methods for determining film thickness and optical constants of films and substrates. J Opt Soc Am. 1971;61:351–9.

    Article  Google Scholar 

  • Sanchez C, Boissière C, Grosso D, Laberty C, Nicole L. Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater. 2008;20:682–737.

    Article  Google Scholar 

  • Santos AMM, Vasconcelos WL. Properties of porous silica glasses prepared via sol ± gel process. J Non-Cryst Solids. 2000;273:145–9.

    Article  Google Scholar 

  • Sasaki K, Takahashi H, Kudo Y, Suzuki N. Determining the absorption coefficient of absorbing thin films with optical waveguides. Appl Optics. 1980;19:3018–21.

    Article  Google Scholar 

  • Sibilia C, Bertolotti M, Fabry L, Liakhou G, Li Voti R. Thermal diffusivity measurements in multilayers through photodeflection method: theory and experiments. In: Righini GC, editor. Quantum electronics and plasma physics: 6th Italian conference. Bologna: Editrice Compositori; 1991.

    Google Scholar 

  • Skrdla PJ, Saavedra SS, Armstrong NR, Mendes SB, Peyghambarian N. Sol–gel-based, planar waveguide sensor for water vapor. Anal Chem. 1999;71:1332–7.

    Article  Google Scholar 

  • Sochacka M, Lago EL, Jaroszewicz Z. Refractive-index profiling of planar gradient-index waveguides by phase-measuring microinterferometry. Appl Optics. 1994;33:3342–7.

    Article  Google Scholar 

  • Song JW, Zhang J, Zhang H, Li C, Lo GQ. Si-photonics based passive device packaging and module performance. Opt Express. 2011;19:18020–8.

    Article  Google Scholar 

  • Strohhofer C, Fick J, Vasconcelos HC, Almeida RM. Active optical properties of Er-containing crystallites in sol–gel derived glass films. J Non-Cryst Solids. 1998;226:182–91.

    Article  Google Scholar 

  • Sun C, Wade MT, Lee Y, Orcutt JS, Alloatti L, Georgas MS, Waterman AS, Shainline JM, Avizienis RR, Lin S, Moss BR, Kumar R, Pavanello F, Atabaki AH, Cook HM, Ou AJ, Leu JC, Chen Y-H, Asanović K, Ram RJ, Popović MA, Stojanović VM. Single-chip microprocessor that communicates directly using light. Nature. 2015;528:534–8.

    Article  Google Scholar 

  • Tamir T, editor. Integrated optics. Berlin: Springer; 1975.

    Google Scholar 

  • Teng C-C. Precision measurements of the optical attenuation profile along the propagation path in thin-film waveguides. Appl Optics. 1993;32:1051–4.

    Article  Google Scholar 

  • Tien PK, Ulrich R. Theory of prism-film coupler and thin-film light guides. J Opt Soc Am. 1970;60:1325–37.

    Article  Google Scholar 

  • Tong XC. Advanced materials for integrated optical waveguides. Cham: Springer, Switzerland; 2014.

    Google Scholar 

  • Ulrich R. Theory of prism-film coupler by plane-wave analysis. J Opt Soc Am. 1970;60:1337–50.

    Article  Google Scholar 

  • Wang X, Xu L, Li D, Liu L, Wang W. Thermo-optic properties of sol–gel-fabricated organic–inorganic hybrid waveguides. J Appl Phys. 2003;94:4228–30.

    Article  Google Scholar 

  • Wang DG, Chen CZ, Ma J, Liu TH. Lead-based titanate ferroelectric thin films fabricated by a sol–gel technique. Appl Surf Sci. 2008;255:1637–45.

    Article  Google Scholar 

  • Wang X, Shen J, Pan Q. Raman spectroscopy of sol–gel derived titanium oxide thin films. J Raman Spectrosc. 2011;42:1578–82.

    Article  Google Scholar 

  • Weber HP, Dunn FA, Leibolt WN. Loss measurements in thin-film optical waveguides. Appl Optics. 1973;12:755–7.

    Article  Google Scholar 

  • Welsch E, Ristau D. Photothermal measurement of optical thin films. Appl Optics. 1995;34:7239–53.

    Article  Google Scholar 

  • Wilhelm B, Romano V, Weber HP. Fluorescence lifetime enhancement of Nd3+−doped sol–gel glasses by Al-codoping and CO2-laser processing. J Non-Cryst Solids. 2003;328:192–8.

    Article  Google Scholar 

  • Won YH, Jaussaud PC, Chartier GH. Three-prism loss measurements of optical waveguides. Appl Phys Lett. 1980;37:269–71.

    Article  Google Scholar 

  • Xiao Y, Shen J, Xie Z, Zhou B, Wu G. Microstructure control of nanoporous silica thin film prepared by sol–gel process. J Mater Sci Technol. 2007;23:504–8.

    Article  Google Scholar 

  • Xie H, Wei J, Zhang X. Characterisation of sol–gel thin films by spectroscopic ellipsometry. J Phys Conf Ser. 2006;28:95–9.

    Article  Google Scholar 

  • Xu Y. Ferroelectric thin films fabricated by sol–gel technique. In: Proceeding of 6th international conference. Solid-state and integrated-circuit technology, Shanghai, China vol. 1. 2001. p. 696–701.

    Google Scholar 

  • Yang L, Saavedra SS, Armstrong NR. Sol–gel based planar waveguide sensor for gaseous iodine. Anal Chem. 1996;68:1834–41.

    Article  Google Scholar 

  • Yeatman EM, Green M, Dawnay EJC, Fardad MA, Horowitz E. Characterisation of microporous sol–gel films for optical device applications. J Sol–gel Sci Technol. 1994;2:711–5.

    Article  Google Scholar 

  • Zhang HX, Zhou Y, Kam CH, Han XQ, Cheng SD, Ooi BS, Lam YL, Chan YC, Sun Z, Yu MB, Shi X, Yoon SF. Deposition of potassium lithium niobate films by sol–gel method. SPIE Proc. 1999;3896:425–32.

    Article  Google Scholar 

  • Zhao X, Li D, Zeng C, Gao G, Huang Z, Huang Q, Wang Y, Xia J. Compact grating coupler for 700-nm silicon nitride strip waveguides. J Lightwave Technol. 2016;34:1322–7.

    Article  Google Scholar 

Download references

Acknowledgments

The collaboration and the useful discussions with S. Berneschi, G. Nunzi Conti, S. Pelli at IFAC CNR (Sesto Fiorentino) and A. Chiasera, A. Chiappini, and M. Ferrari at IFN CNR (Trento) are gratefully acknowledged. Thanks are due to Alessandro Carpentiero (IFN CNR) for drawing some of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo C. Righini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Righini, G.C. (2016). Characterization of Sol-Gel Thin-Film Waveguides. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics