Skip to main content

Miscibility, Phase Separation, and Mechanism of Phase Separation in Epoxy/Thermoplastic Blends

  • Living reference work entry
  • First Online:
Handbook of Epoxy Blends

Abstract

Reaction-induced phase separation in the epoxy/thermoplastic (TP) blends has received considerable interests since the early 1980s. Phase separation studies mostly focused on the miscibility, phase separation mechanism, and morphology formation in the various epoxy/TP systems and processing conditions. This is peculiarly important, since there are still some disagreements on the mechanisms when the traditional understandings of phase separation kinetics are used to explain the phase evolution and unique nodular structure in the present reactive systems. In the existing published work, sea-island, bicontinuous, and nodular structures were mostly reported. It seems that majority of the morphology formation analysis can reach some kind of agreement; however, questions have been raised again and again whenever consistent morphology and performance relationship cannot be obtained or reached. In this chapter, some of the previous reports were briefly reviewed and a more complete three-dimensional view of the phase structure evolution, including the combined in situ optical microscope and light scattering observation and comprehensive information on xy plane and z directions of the whole sample, was introduced. The significant difference between molecule mobility and dynamics of the epoxy oligomers and TP polymer chains was noticeable. Consequently, dynamically asymmetric phase separation was found useful for the discussion of phase separation kinetics of the epoxy/TP systems, which made the nodular structure formation and volume fraction of the TP-rich phase understandable. Layered structure and gradient morphology ubiquitously formed during the cross-linking reaction of many thermoset/thermoplastic systems, which was considered useful for interlamellar toughening or inter-parts adhesion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bauchiere D, Halary JL, Monnerie L, Schirrer R (2000) Relationships between thermally induced residual stresses and architecture of epoxy-amine model networks. J Appl Polym Sci 75:638–650

    Article  CAS  Google Scholar 

  • Blanco M, López M, Fernández R, Martin L, Riccardi CC, Mondragon I (2009) Thermoplastic-modified epoxy resins cured with different functionalities amine mixtures. Kinetics and miscibility study. J Therm Anal Calorim 97:969–978

    Article  CAS  Google Scholar 

  • Bonnet A, Pascault JP, Sautereau H, Taha M, Camberlin Y (1999a) Epoxy-diamine thermoset/thermoplastic blends. 1. Rates of reactions before and after phase separation. Macromolecules 32:8517–8523

    Article  CAS  Google Scholar 

  • Bonnet A, Pascault JP, Sautereau H, Camberlin Y (1999b) Epoxy-diamine thermoset/thermoplastic blends. 2. Rheological behavior before and after phase separation. Macromolecules 32:8524–8530

    Article  CAS  Google Scholar 

  • Bucknall CB, Partridge IK (1983) Phase-separation in epoxy-resins containing polyethersulfone. Polymer 24:639–644

    Article  CAS  Google Scholar 

  • Bucknall CB, Gomezt CM, Quintard I (1994) Phase separation from solutions of poly(ether sulfone) in epoxy resins. Polymer 35:353–359

    Article  CAS  Google Scholar 

  • Chen F, Wang X, Zhao X, Liu J, Yang S, Han CC (2008a) Spontaneous three-layer formation in the curing of polyimide/epoxy blends. Macromol Rapid Commun 29:74–79

    Article  Google Scholar 

  • Chen F, Sun T, Hong S, Meng K, Han CC (2008b) Layered structure formation in the reaction-induced phase separation of epoxy/polyimide blends. Macromolecules 41:7469–7477

    Article  CAS  Google Scholar 

  • Chen F, Zhang Y, Shi W, Yang S, Zhao X, Han CC (2012) Curing agent influence on the layered-structure formation in the epoxy/polysulfone blends. Acta Polym Sin 6:673–678

    Article  Google Scholar 

  • Cicala G (2014) Comparison of epoxy/rubber blends with other toughening strategies: thermoplastic and hyperbranched modifiers. In: Thomas S, Sinturel C, Thomas R (eds) Micro- and nanostructured epoxy/rubber blends. Wiley, Weinheim, pp 363–390

    Google Scholar 

  • Clarke N, McLeish TCB, Jenkins SD (1996) Phase behavior of linear/branched polymer blends. Macromolecules 28:4650–4659

    Article  Google Scholar 

  • de Gennes PG (1976) Dynamics of entangled polymer solutions. Macromolecules 9:587–593, 594–598

    Article  Google Scholar 

  • de Graaf LA, Hempenius MA, Möller M (1995) Demixing behaviour as a tool to control the morphology of thermoplast modified epoxy resins. Polym Prep 36:787–788

    CAS  Google Scholar 

  • Doi M, Onuki A (1992) Dynamic coupling between stress and composition in polymer-solutions and blends. J Phys 2:1631–1656

    CAS  Google Scholar 

  • Enns JB, Gillham JK (1983) Time-temperature-transformation (TTT) cure diagram: modeling the cure behavior of thermosets. J Appl Polym Sci 28:2567–2591

    Article  CAS  Google Scholar 

  • Figueruelo JE, Go’mez CM, Monzo’ IS, Abad C, Campos A (2008) Thermodynamic study on phase equilibrium of epoxy resin/thermoplastic blends. J Chem Thermodyn 40:677–687

    Article  CAS  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  • Galante MJ, Borrajo J, Williams RJJ, Girard-Reydet E, Pascault JP (2001) Double phase separation induced by polymerization in ternary blends of epoxies with polystyrene and poly(methyl methacrylate. Macromolecules 34:2686–2694

    Article  CAS  Google Scholar 

  • Gan WJ, Yu YF, Wang MH, Tao QS, Li SJ (2003) Viscoelastic effects on the phase separation in thermoplastics-modified epoxy resin. Macromolecules 36:7746–7751

    Article  CAS  Google Scholar 

  • Gaw KO, Kakimoto M (1999) Polyimide-epoxy composites. Adv Polym Sci 140:107–136

    Article  CAS  Google Scholar 

  • Giannotti MI, Solsona MS, Galante MJ, Oyanguren PA (2003) Morphology control in polysulfone-modified epoxy resins by demixing behavior. J Appl Polym Sci 89:405–412

    Article  CAS  Google Scholar 

  • Giannotti MI, Foresti ML, Mondragon I, Galante MJ, Oyanguren PA (2004) Reaction-induced phase separation in epoxy/polysulfone/poly(ether imide) systems. I. Phase diagrams. J Polym Sci Part B: Polym Phys 42:3953–3963

    Article  CAS  Google Scholar 

  • Giannotti MI, Mondragon I, Galante MJ, Oyanguren PA (2005) Morphology profiles obtained by reaction-induced phase separation in epoxy/polysulfone/poly(ether imide) systems. Polym Int 54:897–903

    Article  CAS  Google Scholar 

  • Girard-Reydet E, Sautereau H, Pascault JP, Keates P, Navard P, Thollet G, Vigier G (1998) Reaction-induced phase separation mechanisms in modified thermosets. Polymer 39:2269–2280

    Article  CAS  Google Scholar 

  • Han CC, Akcasu AZ (2011) Scattering and dynamics of polymers: seeking order in disordered systems. Wiley, Singapore

    Book  Google Scholar 

  • Hashimoto T, Itakura M, Shimidzu (1986) Late stage spinodal decomposition of a binary polymer mixture. II. Scaling analyses on Qm (Ï„) and Im (Ï„). J Chem Phys 85:6773–6786

    Article  CAS  Google Scholar 

  • Hodgkin JH, Simon JP, Varley RJ (1998) Thermoplastic toughening of epoxy resins: a critical review. Polym Adv Tech 9:3–10

    Article  CAS  Google Scholar 

  • Hourston DJ, Lane JM (1992) The toughening of epoxy resins with thermoplastics: 1. Trifunctional epoxy resin-polyetherimide blends. Polymer 33:1379–1383

    Article  CAS  Google Scholar 

  • Huang P, Zheng S, Huang J, Guo Q, Zhu W (1997) Miscibility and mechanical properties of epoxy resin/polysulfone blends. Polymer 38:5565–5571

    Article  CAS  Google Scholar 

  • Inoue T (1995) Reaction-induced phase separation in polymer blends. Prog Polym Sci 20:119–153

    Article  CAS  Google Scholar 

  • Ishii Y, Ryan AJ, Clarke N (2003) Phase diagram prediction for a blend of Poly(2,6-dimethyl-1,4-phenylene ether) (PPE)/epoxy resin during reaction induced phase separation. Polymer 44:3641–3647

    Article  CAS  Google Scholar 

  • Jyotishkumar P, Paula M, Thomas S (2013) Rheological study of the SAN modified epoxy–DDM system: relationship between viscosity and viscoelastic phase separation. RSC Adv 3:23967–23971

    Article  Google Scholar 

  • Kimoto M, Mizutani K (1997) Blends of thermoplastic polyimide with epoxy resin part II mechanical studies. J Mater Sci 32:2479–2483

    Article  CAS  Google Scholar 

  • Kinloch AJ, Yuen ML, Jenkins SD (1994) Thermoplastic-toughened epoxy polymers. J Mater Sci 29:3781–3790

    Article  CAS  Google Scholar 

  • Lee JC (1999) Polymerization-induced phase separation. Phys Rev E 60:1930–1935

    Article  CAS  Google Scholar 

  • Min BG, Stachurski ZH, Hodgkin JH, Heath GR (1993) Quantitative analysis of the cure reaction of DGEBA/DDS epoxy resins without and with thermoplastic polysulfone modifier using near infra-red spectroscopy. Polymer 34:3620–3627

    Article  CAS  Google Scholar 

  • Park JW, Kim SC (1996) Phase separation during synthesis of polyetherimide/epoxy semi-IPNs. Polym Adv Tech 7:209–220

    Article  CAS  Google Scholar 

  • Simon SL, Gillham JK (1992) Reaction kinetics and TTT cure diagrams for off-stoichiometric ratios of a high-Tg epoxy/amine system. J Appl Polym Sci 46:1245–1270

    Article  CAS  Google Scholar 

  • Solc K, Koningsveld R (1995) Liquid-liquid phase separation in multicomponent polymer systems. XXVI. Blends of two polydisperse polymers. Collect Czech Chem Commun 60:1689–1718

    Article  Google Scholar 

  • Tanaka H (1993) Unusual phase separation in a polymer solution caused by asymmetric molecular dynamics. Phys Rev Lett 71:3158–3161

    Article  CAS  Google Scholar 

  • Tanaka H (1994) Double phase separation in a confined, symmetric binary mixture: interface quench effect unique to bicontinuous phase separation. Phys Rev Lett 72:3690–3693

    Article  CAS  Google Scholar 

  • Tanaka H (2000) Viscoelastic phase separation. J Phys Condens Matter 12:R207–R264

    Article  CAS  Google Scholar 

  • Tanaka Y, Mika TF (1973) Epoxide-curing reactions. In: May CA, Tanaka Y (eds) Epoxy resins chemistry and technology. Marcel Dekker, New York, pp 135–238

    Google Scholar 

  • Tang X, Zhang L, Wang M, Gan W, Li S (2004) Hydrodynamic effect on secondary phase separation in an epoxy resin modified with polyethersulfone. Macromol Rapid Commun 25:1419–1424

    Article  CAS  Google Scholar 

  • Wang X, Okada M, Matsushita Y, Furukawa H, Han CC (2005) Crystal-like array formation in phase separation induced by radical polymerization. Macromolecules 38:7127–7133

    Article  CAS  Google Scholar 

  • Williams RJJ, Rozenberg BA, Pascault JP (1997) Reaction-induced phase separation in modified thermosetting polymers. Adv Polym Sci 128:95–156

    Article  CAS  Google Scholar 

  • Xie XM, Yang H (2001) Phase structure control of epoxy/polysulfone blends-effects of molecular weight of epoxy resins. Mater Des 22:7–9

    Article  Google Scholar 

  • Yee AF, Du J, Thouless MD (2000) Toughening of epoxies. In: Paul DR, Bucknall CB (eds) Polymer blends, vol 2, Performance. Wiley, New York, pp 225–267

    Google Scholar 

  • Yoon TH, Priddy DB, Lyle GD, Mcgrath JE (1995) Mechanical and morphological investigations of reactive polysulfone toughened epoxy networks. Macromol Symp 98:673–686

    Article  CAS  Google Scholar 

  • Yoon T, Kim BS, Lee DS (1997) Structure development via reaction-induced phase separation in tetrafunctional epoxy/polysulfone blends. J Appl Polym Sci 66:2233–2242

    Article  CAS  Google Scholar 

  • Yu YF, Wang MH, Gan WJ, Tao QS, Li SJ (2004) Polymerization-induced viscoelastic phase separation in polyethersulfone-modified epoxy systems. J Phys Chem B 108:6208–6215

    Article  CAS  Google Scholar 

  • Zhang Y, Chen F, Shi W, Liang Y, Han CC (2010) Layered structure formation in the reaction-induced phase separation of epoxy/polysulfone blends. Polymer 51:6030–6036

    Article  CAS  Google Scholar 

  • Zhang Y, Shi W, Chen F, Han CC (2011) Dynamically asymmetric phase separation and morphological structure formation in the epoxy/polysulfone blends. Macromolecules 44:7465–7472

    Article  CAS  Google Scholar 

  • Zhang Y, Chen F, Li Z, Han CC (2012) Ubiquitous nature of the three-layered structure formation in the asymmetric phase separation of the epoxy/thermoplastic blends. Polymer 53:588–594

    Article  CAS  Google Scholar 

  • Zhang D, Zhang J, Zhang A (2014a) Morphology analysis by microscopy techniques and light scattering. In: Thomas S, Sinturel C, Thomas R (eds) Micro- and nanostructured epoxy/rubber blends. Wiley-VCH, Weinheim, pp 147–178

    Google Scholar 

  • Zhang Y, Chen F, Liu W, Zhao S, Liu X, Dong X, Han CC (2014b) Rheological behavior of the epoxy/thermoplastic blends during the reaction induced phase separation. Polymer 55:4983–4989

    Article  CAS  Google Scholar 

  • Zucchi IA, Galante MJ, Borrajo J, Williams RJJ (2004) A model system for the thermodynamic analysis of reaction-induced phase separation: solutions of polystyrene in bifunctional epoxy/amine monomers. Macromol Rapid Commun 205:676–683

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghua Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Chen, F., Zhang, Y., Sun, T., Han, C.C. (2015). Miscibility, Phase Separation, and Mechanism of Phase Separation in Epoxy/Thermoplastic Blends. In: Parameswaranpillai, J., Hameed, N., Pionteck, J., Woo, E. (eds) Handbook of Epoxy Blends. Springer, Cham. https://doi.org/10.1007/978-3-319-18158-5_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18158-5_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-18158-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics