Skip to main content

The Conceptual Model of Formative Assessment of Structural Knowledge

  • Living reference work entry
  • First Online:
Learning, Design, and Technology
  • 390 Accesses

Abstract

One of the factors determining the successful social and economic development of any society is the ability of its members to acquire and apply knowledge effectively for the creation of innovative structures, processes, and products. This demands the revision of strategic objectives of higher educational institutions and their reorientation toward the equipment of students with well-developed structural knowledge. The mentioned type of knowledge refers to understanding of relationships between concepts in a domain. It underlies the individual’s problem-solving capabilities and expert performance, as well as processes of knowledge acquisition, retention, recall, and transfer. Therefore, teachers of higher educational institutions should develop and assess students’ structural knowledge on a regular basis, or, in other words, formative assessment of structural knowledge should be deeply integrated into the study process. However, administrative and teaching staff of higher educational institutions most likely does not have proper understanding of the abovementioned type of assessment as this issue is usually ignored both in the literature on pedagogy and assessment in general and in the literature on formative assessment in particular. This contribution presents a high-level conceptual model of formative assessment of structural knowledge that was developed taking into account requirements obtained from the theoretical research on structural knowledge and formative assessment and the author’s personal instructional experience. The model is not based on any particular assessment method. It specifies activities at the level of teacher-student interaction that should be implemented with an aim to support formative assessment of structural knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson, O. R. (2009). Neurocognitive theory and constructivism in science education: A review of neurobiological, cognitive and cultural perspectives. Brunei International Journal of Science and Mathematics Education, 1(1), 1–32.

    Google Scholar 

  • Anohina-Naumeca, A. (2015). Justifying the usage of concept mapping as a tool for the formative assessment of the structural knowledge of engineering students. Knowledge Management & E-Learning, 7(1), 56–72.

    Google Scholar 

  • Ausubel, D. P. (2000). The acquisition and retention of knowledge: A cognitive view. Boston, MA: Kluwer.

    Book  Google Scholar 

  • Beissner, K. L., Jonassen, D. H., & Grabowski, B. L. (1994). Using and selecting graphic techniques to acquire structural knowledge. Performance Improvement Quarterly, 7(4), 20–38. doi:10.1111/j.1937-8327.1994.tb00648.x.

    Article  Google Scholar 

  • Bell, B., & Cowie, B. (2002). Formative assessment and science education. New York, NY: Kluwer.

    Google Scholar 

  • Bennett, R. E. (2011). Formative assessment: A critical review. Assessment in Education: Principles, Policy & Practice, 18(1), 5–25. doi:10.1080/0969594X.2010.513678.

    Article  Google Scholar 

  • Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7–74. doi:10.1080/0969595980050102.

    Article  Google Scholar 

  • Brookhart, S. M. (2010). Formative assessment strategies for every classroom: An ASCD action tool. Alexandria, VA: ASCD.

    Google Scholar 

  • Cizek, G. J. (2010). An introduction to formative assessment: History, characteristics, and challenges. In H. L. Andrade & G. J. Cizek (Eds.), Handbook of formative assessment (pp. 3–15). New York, NY: Routledge.

    Google Scholar 

  • Clariana, R. B. (2010). Multi-decision approaches for eliciting knowledge structure. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 41–60). London, UK: Springer.

    Chapter  Google Scholar 

  • Clariana, R. B., & Wallace, P. E. (2009). A comparison of pair-wise, list-wise, and clustering approaches for eliciting structural knowledge. International Journal of Instructional Media, 36(3), 287–302.

    Google Scholar 

  • Cohen, L., Manion, L., Morrison, K., & Wyse, D. (2010). A guide to teaching practice. Oxon, UK: Routledge.

    Google Scholar 

  • Curtis, M. B., & Davis, M. A. (2003). Assessing knowledge structure in accounting education: An application of Pathfinder Associative Networks. Journal of Accounting Education, 21(3), 185–195. doi:10.1016/S0748-5751(03)00024-1.

    Article  Google Scholar 

  • Dacin, P. A., & Mitchell, A. A. (1986). The measurement of declarative knowledge. In R. J. Lutz (Ed.), North American advances in consumer research (pp. 454–459). Provo, UT: Association for Consumer Research.

    Google Scholar 

  • Davis, M., Curtis, M. B., & Tschetter, J. D. (2003). Evaluating cognitive training outcomes: Validity and utility of structural knowledge assessment. Journal of Business and Psychology, 18(2), 191–206. doi:10.1023/A:1027397031207.

    Article  Google Scholar 

  • Day, E. A., Arthur, W., Jr., & Gettman, D. (2001). Knowledge structures and the acquisition of a complex skill. Journal of Applied Psychology, 86(5), 1022–1033.

    Article  Google Scholar 

  • De Jong, T., & Ferguson-Hessler, M. G. M. (1996). Types and qualities of knowledge. Educational Psychologist, 31(2), 105–113. doi:10.1207/s15326985ep3102_2.

    Article  Google Scholar 

  • Dekkers, R. (2015). Applied systems theory. Zurich, Switzerland: Springer International Publishing. doi:10.1007/978-3-319-10846-9.

    Book  Google Scholar 

  • Diekhoff, G. M. (1983). Testing through relationship judgments. Journal of Educational Psychology, 75(2), 227–233.

    Article  Google Scholar 

  • Ecclestone, K. (2010). Transforming formative assessment in lifelong learning. Berkshire, UK: Open University Press.

    Google Scholar 

  • Feltovich, P. J., Prietula, M. J., & Ericsson, K. A. (2006). Studies of expertise from psychological perspectives. In K. A. Ericsson, N. Charness, P. J. Feltovich, & R. R. Hoffman (Eds.), The Cambridge handbook of expertise and expert performance (pp. 39–68). New York, NY: Cambridge University Press.

    Google Scholar 

  • Goldsmith, T. E., Johnson, P. J., & Acton, W. H. (1991). Assessing structural knowledge. Journal of Educational Psychology, 83(1), 88–96.

    Article  Google Scholar 

  • Goldstein, E. B. (2008). Cognitive psychology: Connecting mind, research, and everyday experience. Belmont, CA: Wadsworth.

    Google Scholar 

  • Hoffman, R. (1998). How can expertise be defined? Implications of research from cognitive psychology. In R. Williams, W. Faulkner, & J. Fleck (Eds.), Exploring expertise. Issues and perspectives (pp. 81–99). London, UK: MacMillan Press.

    Chapter  Google Scholar 

  • Holodnaja, M. A. (2002). Психология интеллекта: Парадоксы исследования [Psychology of intellect: Paradoxes of research]. СПб, Россия: Питер.

    Google Scholar 

  • Hoole, E. (2006). Integrating and evaluating mathematical models of assessing structural knowledge: Comparing associative networking methodologies (Unpublished doctoral dissertation). Harrisonburg, VA: James Madison University.

    Google Scholar 

  • Irons, A. (2008). Enhancing learning through formative assessment. Oxon, UK: Routledge.

    Google Scholar 

  • Jonassen, D. H. (1999). Designing constructivist learning environments. In C. M. Reigeluth (Ed.), Instructional-design theories and models: A new paradigm of instructional theory (pp. 215–239). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Jonassen, D. H. (2000). Computers as mindtools for schools: Engaging critical thinking (2nd ed.). Upper Saddle River, NJ: Merrill Publishing Associates.

    Google Scholar 

  • Jonassen, D. H. (2004). Learning to solve problems: An instructional design guide. San Francisco, CA: Pfeiffer.

    Google Scholar 

  • Jonassen, D. H., Beissner, K., & Yacci, M. (1993). Structural knowledge: Techniques for representing, conveying, and acquiring structural knowledge. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Keeley, P. (2008). Science formative assessment: 75 practical strategies for linking assessment, instruction, and learning. Thousand Oaks, CA: Corwin Press.

    Google Scholar 

  • Knight, P. (2001). A briefing on key concepts: Formative and summative, criterion & norm-referenced assessment. York, UK: LTSN Generic Centre.

    Google Scholar 

  • Koubek, R. (1991). Toward a model of knowledge structure and a comparative analysis of knowledge structure measurement techniques. Retrieved from http://www.dtic.mil/dtic/tr/fulltext/u2/a241400.pdf

  • Koubek, R. J., Clarkston, T. P., & Calvez, V. (1994). The training of knowledge structures for manufacturing tasks: An empirical study. Ergonomics, 37(4), 765–780. doi:10.1080/00140139408963687.

    Article  Google Scholar 

  • Lieberman, D. A. (2012). Human learning and memory. New York, NY: Cambridge University Press.

    Google Scholar 

  • Lopez, E. J., Shavelson, R. J., Nandagopal, K., Szu, E., & Penn, J. (2014). Ethnically diverse students’ knowledge structures in first-semester organic chemistry. Journal of Research in Science Teaching: Special Issue on Discipline-Centered Postsecondary Science Education, 51(6), 741–758. doi:10.1002/tea.21160.

    Article  Google Scholar 

  • Meyer, B. (2008). The effects of structural and group knowledge on complex problem solving performance (Unpublished doctoral dissertation). Humboldt-Universität zu Berlin, Germany.

    Google Scholar 

  • Murphy, L. C. R., & Suen, H. K. (1999). Validating measures of structural knowledge through the multitrait-multimethod matrix. Paper presented at the Annual Meeting of the American Educational Research Association, Montreal, QC.

    Google Scholar 

  • Newton, P. E. (2007). Clarifying the purposes of educational assessment. Assessment in Education, 14(2), 149–170. doi:10.1080/09695940701478321.

    Article  Google Scholar 

  • Novak, J. D. (2002). Meaningful learning: The essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science Education, 86(4), 548–571. doi:10.1002/sce.10032.

    Article  Google Scholar 

  • Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Organisation for Economic Co-operation and Development. (2013). Synergies for better learning: An international perspective on evaluation and assessment. OECD reviews of evaluation and assessment in education. Paris, France: OECD Publishing.

    Google Scholar 

  • Popham, W. J. (2011). Transformative assessment in action: An inside look at applying the process. Alexandria, VA: ASCD.

    Google Scholar 

  • Preece, P. F. (1976). Mapping cognitive structure: A comparison of methods. Journal of Educational Psychology, 68(1), 1–8. doi:10.1037/0022-0663.68.1.1.

    Article  Google Scholar 

  • Pritchard, A. (2009). Ways of learning: Learning theories and learning styles in the classroom. New York, NY: Routledge.

    Google Scholar 

  • Quinlan, P., & Dyson, B. (2008). Cognitive psychology. Harlow, UK: Pearson Education.

    Google Scholar 

  • Rumelhart, D. E., & Norman, D. A. (1976). Accretion, tuning and restructuring: Three modes of learning (Report No. 7602). San Diego, CA: University of California.

    Google Scholar 

  • Shavelson, R. J. (1972). Some aspects of the correspondence between content structure and cognitive structure in physics instruction. Journal of Educational Psychology, 63(3), 225–234.

    Article  Google Scholar 

  • Shavelson, R. J. (1974). Methods for examining representations of a subject-matter structure in a student’s memory. Journal of Research in Science Teaching, 11(3), 231–249. doi:10.1002/tea.3660110307.

    Article  Google Scholar 

  • Shavelson, R. J. (1983). On quagmires, philosophical and otherwise: A reply to Phillips. Educational Psychologist, 18(2), 81–87. doi:10.1080/00461528309529265.

    Article  Google Scholar 

  • Shavelson, R. J. (2006). On the integration of formative assessment in teaching and learning with implications for teacher education. Retrieved from http://www.stanford.edu/dept/SUSE/SEAL/Reports_Papers/On%20the%20Integration%20of%20Formative%20Assessment_Teacher%20Ed_Final.doc

  • Shavelson, R. J., Lang, H., & Lewin, B. (1994). On concept maps as potential “authentic” assessments in science (CSE Technical Report No. 388). Los Angeles, CA: University of California.

    Google Scholar 

  • Shavelson, R. J., Ruiz-Primo, M. A., & Wiley, E. W. (2005). Windows into the mind. Higher Education, 49(4), 413–430. doi:10.1007/s10734-004-9448-9.

    Article  Google Scholar 

  • Shavelson, R. J., Young, D. B., Ayala, C. C., Brandon, P. R., Furtak, E. M., Ruiz-Primo, M. A., . . . & Yin, Y. (2008). On the impact of curriculum-embedded formative assessment on learning: A collaboration between curriculum and assessment developers. Applied Measurement in Education, 21(4), 295–314. doi:10.1080/08957340802347647.

    Google Scholar 

  • Srinivasan, M., McElvany, M., Shay, J. M., Shavelson, R. J., & West, D. C. (2008). Measuring knowledge structure: Reliability of concept mapping assessment in medical education. Academic Medicine, 83(12), 1196–1203. doi:10.1097/ACM.0b013e31818c6e84.

    Article  Google Scholar 

  • Sternberg, R. J. (2003). Cognitive psychology. Belmont, CA: Wadsworth.

    Google Scholar 

  • Taber, K. S. (2011). Constructivism as educational theory: Contingency in learning, and optimally guided instruction. In J. Hassaskhah (Ed.), Educational theory (pp. 39–61). New York, NY: Nova.

    Google Scholar 

  • Trumpower, D. L., & Sarwar, G. S. (2010). Effectiveness of structural feedback provided by Pathfinder networks. Journal of Educational Computing Research, 43(1), 7–24.

    Article  Google Scholar 

  • Tsai, C.-C., & Huang, C.-M. (2002). Exploring students’ cognitive structures in learning science: A review of relevant methods. Journal of Biological Education, 36(4), 163–169. doi:10.1080/00219266.2002.9655827.

    Article  Google Scholar 

  • Wadsworth, B. J. (2006). Piaget’s theory of cognitive and affective development. Boston, MA: Pearson.

    Google Scholar 

  • Wiliam, D., & Thompson, M. (2008). Integrating assessment with learning: What will it take to make it work? In C. A. Dwyer (Ed.), The future of assessment: Shaping teaching and learning (pp. 53–84). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Yielder, J. (2009). Professional expertise: A model for integration and change. Saarbrücken, Germany: VDM Verlag Dr. Müller.

    Google Scholar 

  • Yorke, M. (2003). Formative assessment in higher education: Moves toward theory and the enhancement of pedagogic practice. Higher Education, 45(4), 477–501. doi:10.1023/A:1023967026413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Anohina-Naumeca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Anohina-Naumeca, A. (2016). The Conceptual Model of Formative Assessment of Structural Knowledge. In: Spector, M., Lockee, B., Childress, M. (eds) Learning, Design, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-17727-4_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17727-4_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17727-4

  • eBook Packages: Springer Reference EducationReference Module Humanities and Social SciencesReference Module Education

Publish with us

Policies and ethics