Skip to main content

High Brightness Photo Injectors for Brilliant Light Sources

  • Reference work entry
Synchrotron Light Sources and Free-Electron Lasers

Abstract

The large variety of existing and planned light sources sets specific demands on the performance of the corresponding electron injectors which requires specific solutions. In the introductory part of this chapter, a general injector layout and three types of photo emission-based electron sources will be described. In subsequent sections, different designs of electron sources providing a wide range of average electron currents from nA to 100 mA will be discussed. Basics of the experimental optimization of modern electron sources and future options will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equation 1 assumes that there is no significant coupling between the transverse phase spaces and between the transverse and the longitudinal phase spaces.

  2. 2.

    For Eq. 4 constant charges and projected transverse emittances of the bunches are assumed over all bunches generated within 1 s. This is not necessarily straightforward since it needs feedback algorithms to stabilize the RF and photo cathode laser properties. In addition it should be noted that the average injector brightness is not the sum of the average slice brightness of all bunches per second, because the average slice brightness of each bunch does not include the mismatch between the different slices of the bunch.

References

  • R. Akre et al., Commissioning the linac coherent light source injector. Phys. Rev. ST Accel. Beams 11, 030703 (2008)

    Article  ADS  Google Scholar 

  • D. Alesini et al., The SPARC project: a high-brightness electron beam source at LNF to drive a SASA-FEL experiment. Nucl. Instrum. Methods A 507, 345–349 (2003)

    Article  ADS  Google Scholar 

  • D. Alesini et al., The project PLASMONX for plasma acceleration experiments and a Thomson X-Ray source at SPARC, in Proceedings of the PAC2005, Knoxville, 2005, pp. 820-822

    Google Scholar 

  • A. Arnold et al., Development of a superconducting radio frequency photoelectron injector. Nucl. Instrum. Methods A 577, 440–454 (2007)

    Article  ADS  Google Scholar 

  • G. Asova, Tomography of the electron beam transverse phase space at PITZ, PhD thesis, Bulgarian Academy of Sciences, Sofia (2012), http://pitz.desy.de/sites/site_pitz/content/e123/e129016/e129324/infoboxContent171923/Thesis2012Asova_eng.pdf

  • ASTRA Manual, update April 2014, http://www.desy.de/~mpyflo/Astra_documentation/Astra-Manual_V3.1.pdf

  • K. Baptiste et al., A CW normal-conductive RF gun for free electron laser and energy recovery linac applications. Nucl. Instrum. Methods A 599(1), 9–14 (2009). LBNL-1708E

    Google Scholar 

  • I.V. Bazarov, C.K. Sinclair, High brightness, high current injector design for the cornell ERL prototype, in Proceedings of the PAC2003, Portland, 2003, pp. 2062–2064

    Google Scholar 

  • I.V. Bazarov, C.K. Sinclair, Multivariate optimization of a high brightness dc gun photoinjector. Phys. Rev. ST Accel. Beams 8, 034202 (2005)

    Article  ADS  Google Scholar 

  • B.E. Carlsten, New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl. Instrum. Methods A 285, 313–319 (1989)

    Article  ADS  Google Scholar 

  • B.E. Carlsten, Space charge induced emittance compensation in high brightness photoinjectors. Part. Accel. 49, 27–65 (1995)

    Google Scholar 

  • A. Cianchi et al., High brightness electron beam emittance evolution measurements in an rf photoinjector. Phys. Rev. ST Accel. Beams 11, 032801 (2008)

    Article  ADS  Google Scholar 

  • W. Decking, T. Limberg, European XFEL Post-TDR description, XFEL.EU TN-2013-004-01, https://docs.xfel.eu/alfresco/d/a/workspace/SpacesStore/7f5974d5-23b7-48e5-a54c-a752b 83761bc/TN-2013-004-01_TDR_Design_Changes.pdf

  • Y. Ding et al., Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source. Phys. Rev. Lett. 102, 254801 (2009)

    Article  ADS  Google Scholar 

  • D. Dowell, J. Smerge, Quantum efficiency and thermal emittance of metal photocathodes. Phys. Rev. ST Accel. Beams 12, 074201 (2009)

    Article  ADS  Google Scholar 

  • D.H. Dowell et al., First operation of a photocathode radio frequency gun injector at high duty factor. Appl. Phys. Lett. 63(15), 2035–2037 (1993)

    Article  ADS  Google Scholar 

  • D.H. Dowell, S.Z. Bethel, K.D. Friddell, Results from the average power laser experiment photocathode injector test. Nucl. Instrum. Methods A 356, 167–176 (1995)

    Article  ADS  Google Scholar 

  • D. Dowell et al., The development of the linac coherent light source RF Gun. ICFA Beam Dyn. Newsl. 46, 162–192 (2008)

    Google Scholar 

  • D.H. Dowell et al., Cathode R&D for future light sources. Nucl. Instrum. Methods A 622, 685–697 (2010)

    Article  ADS  Google Scholar 

  • B.M. Dunham, L.S. Cardman, C.K. Sinclair, Emmitance measurements for the illinoise/CEBAF polarized electron source, in Proceedings of the PAC1995, Dallas, 1995, pp. 1030–1032

    Google Scholar 

  • B. Dunham et al., Record high-average current from a high-brightness photoinjector. Appl. Phys. Lett. 102, 034105 (2013)

    Article  ADS  Google Scholar 

  • B. Dwersteg, K. Floettmann, J. Sekutowicz, Ch. Stolzenburg, RF gun design for the TESLA VUV Free Electron Laser. Nucl. Instrum. Methods A 393, 93–95 (1997)

    Article  ADS  Google Scholar 

  • P. Emma, A. Brachmann, D. Dowell et al., Beam brightness measurements in the LCLS injector, in Mini-WS on Compact X-Ray FELs Using HBB, LBNL, Berkeley, 2010

    Google Scholar 

  • M. Ferrario, J.E. Clendenin, D.T. Palmer, J.B. Rosenzweig, L. Serafini, HOMDYN study for the LCLS RF photo-injector, in Proceedings of the 2nd ICFA Advanced Accelerator Workshop on the Physics of High Brightness Beams, UCLA, Los Angeles, 1999, pp. 534–563. SLAC-PUB-8400, 2000

    Google Scholar 

  • M. Ferrario, K. Flöttmann, B. Grigorian, T. Limberg, Ph. Piot, Conceptual design of the XFEL photoinjector, TESLA FEL report 2001–03

    Google Scholar 

  • M. Ferrario et al., SPARC_LAB present and future. Nucl. Instrum. Methods B 309, 183 (2013)

    Article  ADS  Google Scholar 

  • D. Filippetto et al., Phase space analysis of velocity bunched beams. Phys. Rev. ST Accel. Beams 14, 092804 (2011)

    Article  ADS  Google Scholar 

  • K. Floettmann, Note on the thermal emittance of electrons emitted by Cesium Telluride photo cathodes, TESLA-FEL report 1997-01, DESY, 1997

    Google Scholar 

  • K. Floettmann, T. Limberg, P. Piot, Generation of ultrashot electron bunches by cancellation of nonlinear distortions in the longitudinal phase space, TESLA FEL report 2001–06

    Google Scholar 

  • K. Flöttmann, D. Janssen, V. Volkov, Emittance compensation in a superconducting rf gun with a magnetic mode. Phys. Rev. ST Accel. Beams 7, 090702 (2004)

    Article  ADS  Google Scholar 

  • J. Frisch et al., Operation and upgrades of the LCLS, in Proceedings of the LINAC2010, Tsukuba, 2010, pp. 694–697

    Google Scholar 

  • B.v.d. Geer, Conceptual Design of a 1kA, 100fs, 1 micron split RF-photoinjector, in ICFA Workshop on the Physics and Applications of High Brightness Electron Beams, Erice, 2005

    Google Scholar 

  • C. Gulliford et al., Demonstration of low emittance in the Cornell energy recovery linac injector prototype. Phys. Rev. ST Accel. Beams 16, 073401 (2013)

    Article  ADS  Google Scholar 

  • B. Hidding et al., Method for generating high-energy electron beams with ultra short pulse length, width, divergence and emittance in a hybrid laser-plasma accelerator, filed as German Patent June 2011, AZ 10 2011 104 858.1. Filed as PCT/US patent via UCLA under the title Method for Generating Electron Beams in a Hybrid Laser-Plasma-Accelerator on 18 June 2012, PCT/US Ser. No. PCT/US12/043002

    Google Scholar 

  • B. Hidding, G. Pretzler, J.B. Rosenzweig, T. Königstein, D. Schiller, D.L. Bruhwiler, Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout, aka Trojan horse laser electron injection and acceleration in a beam-driven plasma blowout. Phys. Rev. Lett. 108, 035001 (2012)

    Article  ADS  Google Scholar 

  • Z. Huang et al., Suppression of microbunching instability in the linac coherent light source. Phys. Rev. ST Accel. Beams 7, 074401 (2004)

    Article  ADS  Google Scholar 

  • Z. Huang et al., Measurements of the LCLS laser heater and its impact on the x-ray FEL performance, SLAC-PUB-13854, 2009

    Google Scholar 

  • I. Isaev et al., Conditioning Status of the first XFEL gun at PITZ, in Proceedings of the FEL2013, New York, 2013, pp. 282–286

    Google Scholar 

  • D. Janssen, V. Volkov, RF focussing – an instrument for beam quality improvement in superconducting RF guns. Nucl. Instrum. Methods A 452, 34–43 (2000)

    Article  ADS  Google Scholar 

  • D. Janssen, V. Volkov, Emittance compensation in a superconducting RF photoelectron gun by a magnetic RF field, in Proceedings of the EPAC2004, Lucern, 2004, pp. 330–332

    Google Scholar 

  • D. Janssen et al., First operation of a superconducting RF-gun. Nucl. Instrum. Methods A 507, 314–317 (2003)

    Article  ADS  Google Scholar 

  • D. Janssen et al., Superconducting RF guns for FELs. Nucl. Instrum. Methods A 528, 305–311 (2004)

    Article  ADS  Google Scholar 

  • I.M. Kapchinskii, V.V. Vladimirskii, in Proceedings of the International Conference on High Energy Access, CERN, Geneva, 1959, p. 274

    Google Scholar 

  • M. Khojoyan et al., Beam dynamics optimization for the high brightness PITZ photo injector using 3D ellipsoidal cathode laser pulses, in Proceedings of the 35th FEL Conference, New York, 2013, p. 298

    Google Scholar 

  • K.-J. Kim, Rf and space-charge effects in laser-driven RF electron guns. Nucl. Instrum. Methods A 275, 201 (1989)

    Article  ADS  Google Scholar 

  • M. Krasilnikov, Impact of the cathode roughness on the emittance of an electron beam, in Proceedings of FEL 2006 Conference, Berlin, 2006, pp. 583–586

    Google Scholar 

  • M. Krasilnikov et al., Beam-based procedures for the RF guns, in Proceedings of the PAC2005, Knoxville, 2005, pp. 967–969

    Google Scholar 

  • M. Krasilnikov, F. Stephan et al., Experimentally minimized beam emittance from an L-band photoinjector. Phys. Rev. ST Accel. Beams 15, 1000701 (2012)

    Article  Google Scholar 

  • M. Krasilnikov, F. Stephan et al., PITZ experience on the experimental optimization of the RF photo injector for the European XFEL, in Proceedings of the FEL2013, New York, 2013a, p. 160

    Google Scholar 

  • M. Krasilnikov et al., Development of a photo cathode laser system for quasi ellipsoidal bunches at PITZ, in Proceedings of the 35th FEL Conference, New York, 2013b, p. 303

    Google Scholar 

  • L.V. Kravchuk et al., Layout of the PITZ transverse deflecting system for longitudinal phase space and slice emittance measurements, in Proceedings of the 25th Linear Accelerator Conference, Tsukuba, 2010, p. 416

    Google Scholar 

  • Y. Li et al., Laser pulse shaping for generating uniform three-dimensional ellipsoidal electron beams. Phys. Rev. ST Accel. Beams 12, 020702 (2009)

    Article  ADS  Google Scholar 

  • C. Limborg, Z. Li, L. Xiao, J.F. Schmerge, D. Dowell, S. Gierman, E. Bong, S. Gilevich, RF Design of the LCLS Gun, LCLS-TN-05-3, 2005

    Google Scholar 

  • C. Limborg-Deprey, Maximizing brightness in photoinjectors, in Proceedings of the FEL2005, Stanford, 2005, pp. 418–421

    Google Scholar 

  • O. J. Luiten, S.B. van der Geer, M.J. de Loos, F.B. Kiewiet, M.J. van der Wiel, How to realize uniform three-dimensional ellipsoidal electron bunches. Phys. Rev. Lett. 93, 094802-1–094802-4 (2004)

    Google Scholar 

  • D. Malyutin et al., Commissioning of new diagnostic devices at PITZ, in Proceedings of the RuPAC2012, St. Petersburg, 2012, pp. 674–676

    Google Scholar 

  • A. Mostacci et al., Advanced beam manipulation techniques at SPARC, in Proceedings of the IPAC 2011, San Sebastian, 2011, pp. 2877–2881

    Google Scholar 

  • D.A. Orlov, U. Weigel, D. Schwalm, A.S. Terekhov, A. Wolf, Ultra-cold electron source with a GaAs-photocathode. Nucl. Instrum. Methods A 532, 418–421 (2004)

    Article  ADS  Google Scholar 

  • V.V. Paramonov et al., The PITZ CDS booster cavity RF tuning and start of conditioning, in Proceedings of the 25th Linear Accelerator Conference, Tsukuba, 2010, p. 241

    Google Scholar 

  • P. Piot, Photoinjectors R&D for future light sources & linear colliders, in Proceedings of the LINAC2006, Knoxville, pp. 549–553 (2006)

    Google Scholar 

  • S. Rimjaem et al., Optimizations of transverse projected emittance at the photo-injector test facility at DESY, location Zeuthen. Nucl. Instrum. Methods A 671, 62–75 (2012)

    Article  ADS  Google Scholar 

  • R.A. Rimmer, A high-gradient CW RF photo-cathode electron gun for high current injectors, in Proceedings of the PAC2005, Knoxville, 2005, pp. 3049–3051

    Google Scholar 

  • J. Rönsch, Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF electron source for the European X-FEL, PhD thesis, Hamburg University, 2009 and DESY-THESIS-2010-001, Jan 2010

    Google Scholar 

  • E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, An analytical description of longitudinal phase space distortions in magnetic bunch compressors. Nucl. Instrum. Methods A 483, 516–520 (2002)

    Article  ADS  Google Scholar 

  • F. Sannibale et al., Advanced photoinjector experiment photogun commissioning results. Phys. Rev. ST Accel. Beams, 15, 103501 (2012)

    Article  ADS  Google Scholar 

  • P. Schmüser, M. Dohlus, J. Rossbach, Ultraviolet and Soft X-Ray Free-Electron Lasers (Springer, Berlin/Heidelberg, 2008), pp. 112–117

    Google Scholar 

  • L. Serafini, M. Ferrario, Velocity bunching in photo-injectors. AIP Conf. Proc. 581, 87–106 (2001)

    Article  ADS  Google Scholar 

  • L. Serafini, J.B. Rosenzweig, Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: a theory of emittance compensation. Phys. Rev. E 55, 7565–7590 (1997)

    Article  ADS  Google Scholar 

  • J. Staples, F. Sannibale, S. Virostek, VHF-band Photoinjector, CBP Tech Note 366, Berkeley, 26 Oct 2006

    Book  Google Scholar 

  • L. Staykov, Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site, PhD thesis, Hamburg University, 2009, DESY-THESIS-2012-041

    Google Scholar 

  • F. Stephan et al., New experimental results from PITZ, in Proceedings of the LINAC2008, Victoria, 2008, pp. 474-476 and references therein

    Google Scholar 

  • F. Stephan, C.H. Boulware, M. Krasilnikov, J. Bähr et al., Detailed characterization of electron sources yielding first demonstration of European X-ray Free-Electron Laser beam quality. Phys. Rev. ST Accel. Beams 13, 020704 (2010)

    Article  ADS  Google Scholar 

  • J. Teichert et al., Free-electron laser operation with a superconducting radio-frequency photoinjector at ELBE. Nucl. Instrum. Methods A 743, 114–120 (2013)

    Article  ADS  Google Scholar 

  • The European X-Ray Free-Electron Laser, Technical design report, DESY 2006-097, July 2007

    Google Scholar 

  • G. Vashchenko, Transverse phase space studies with the new CDS booster cavity at PITZ, PhD thesis, Hamburg University, 2013, DESY-THESIS-2013-043

    Google Scholar 

  • V. Volkov, D. Janssen, Application of cavity transverse modes in accelerators. Phys. Rev. ST Accel. Beams, 11, 061302 (2008)

    Article  ADS  Google Scholar 

  • I. Will, G. Klemz, Generation of flat-top picosecond pulses by coherent pulse stacking in a multicrystal birefringent filter. Opt. Exp. 16, 14922 (2008)

    Article  ADS  Google Scholar 

  • I. Will, G. Koss, I. Templin, The upgraded photocathode laser of the TESLA Test Facility. Nucl. Instrum. Methods Phys. Res. A 541, 467 (2005)

    Article  ADS  Google Scholar 

  • I. Will, H.I. Templin, S. Schreiber, W. Sandner, Photoinjector drive laser of the FLASH FEL. Opt. Exp. 19, 23770 (2011)

    Article  ADS  Google Scholar 

  • D. Xiang et al., First principle measurements of thermal emittance for copper and magnesium, in Proceedings of PAC07 Conference, Albuquerque, 2007, pp. 1049–1051

    Google Scholar 

  • L. Xiao, R.F. Boyce, D.H. Dowell, Z. Li, C. Limborg-Deprey, J.F. Schmerge, Dual feed RF gun design for the LCLS, in Proceedings of the PAC2005, Knoxville, 2005, pp. 3432–3434

    Google Scholar 

  • F. Zhou et al., Impact of the spatial laser distribution on photocathode gun operation. Phys. Rev. ST Accel. Beams 15, 090701 (2012a)

    Article  ADS  Google Scholar 

  • F. Zhou et al., High-brightness electron beam evolution following laser-based cleaning of a photocathode. Phys. Rev. ST Accel. Beams 15, 090703 (2012b)

    Article  ADS  Google Scholar 

  • F. Zhou et al., Measurements and analyses of a collimated beam in a magnetic bunch compressor. Phys. Rev. ST Accel. Beams (2015, submitted)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank D. Dowell, B. Dunham, M. Ferrario, B. Hidding, F. Sannibale, J. Teichert, F. Zhou, and the members of the PITZ collaboration for providing material and many useful discussions. Many thanks also to K. Flöttmann and M. Gross for reading and commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Stephan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Stephan, F., Krasilnikov, M. (2016). High Brightness Photo Injectors for Brilliant Light Sources. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-14394-1_15

Download citation

Publish with us

Policies and ethics