Skip to main content

Diffusion of Nanoparticles in Gases and Liquids

  • Living reference work entry
  • First Online:
Handbook of Nanoparticles
  • 695 Accesses

Abstract

Nanofluids are two-phase systems consisting of a carrier medium (gas or liquid) and nanoparticles. Due to very small sizes and large specific surface areas of the nanoparticles, nanofluids have superior properties therefore they have applies successfully in different technologies including MEMS- and nanotechnologies. One of the nanofluids theory key problems is the nanoparticles diffusion in liquids and gases. The object of this review is the systematic description of the features of the nanoparticle diffusion in gases and liquids. In particular, it is discussed: (i) The diffusion and thermal diffusion of nanoparticles in rarefied gases; (ii) The kinetic theory of nanoparticles diffusion in gases; (iii) Diffusion of nanoparticles in dense gases and liquids; and (iv) Mechanisms of the nanoparticle velocity relaxation in gases and liquids. It was shown that in general case the diffusion of nanoparticles in fluids is differed from diffusion of molecules and Brownian particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Developments Applications of Non-Newtonian Flows, FED-vol. 231/MD-vol. 66., ed. by D. A. Siginer, H. P. Wang, (ASME, New York, 1995), pp. 99–105

    Google Scholar 

  2. V.Y. Rudyak, S.L. Krasnolutskii, On kinetic theory of diffusion of nanoparticles in a rarefied gas. Atm. Oceanic Opt. 16(5–6), 468–471 (2003)

    Google Scholar 

  3. V.Y. Rudyak, A.A. Belkin, Mechanisms of collective nanoparticles interaction with condensed solvent. Thermophys. Aeromech. 11(2), 54–63 (2004)

    Google Scholar 

  4. V.Y. Rudyak, Kinetic theory and modern aerohydromechanics. Siberian J. Ind. Math. 8(3), 120–148 (2005)

    Google Scholar 

  5. V.Y. Rudyak, A.A. Belkin, S.L. Krasnolutskii, Statistical theory of nanoparticle transport processes in gases and liquids. Thermophys. Aeromech. 12(4), 506–516 (2005)

    Google Scholar 

  6. I.S. Grigoriev, E.Z. Meilikhov (ed.), Physical Values. Handbook (Energy & Atom Press, Moscow, 1991)

    Google Scholar 

  7. H. Masuda et al., Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersions of γ-Al2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei (Japan) 4, 227–239 (1993)

    Article  Google Scholar 

  8. J.A. Eastman, U.S. Choi, S. Li, G. Soyez, L.J. Thompson, R.J. DiMelfi, Novel thermal properties of nanostructured materials. Inv. paper to Int. Symp. on Metastable Mechanically Alloyed, and Nanocrystalline Materials, December 7–12, 1998, Wollongong, Australia

    Google Scholar 

  9. X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle–fluid mixture. J. Thermophys. Heat Trans. 13(4), 474–480 (1999)

    Article  Google Scholar 

  10. R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15(3), 1646–1668 (2011)

    Article  Google Scholar 

  11. A.M. Baklanov, S.N. Dubtsov, An experimental set-up for aerosol spectrometers calibration. J. Aerosol. Sci. 24(Suppl. 1), S237–S238 (1993)

    Article  Google Scholar 

  12. V.Y. Rudyak, S.N. Dubtsov, A.M. Baklanov, Temperature dependence of the diffusion coefficient of nano-particles. Tech. Phys. Lett. 34, 519–521 (2008)

    Article  Google Scholar 

  13. V.Y. Rudyak, S.N. Dubtsov, A.M. Baklanov, Measurements of the temperature dependent diffusion coefficient of nanoparticles in the range of 295–600 K at atmospheric pressure. J. Aerosol. Sci. 40, 833–843 (2009)

    Article  Google Scholar 

  14. H. Akoh, Y. Tsukasaki, S. Yatsuya, A. Tasaki, Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate. J. Crystal Growth. 45, 495–500 (1978)

    Article  Google Scholar 

  15. C.-H. Lo, T.-T. Tsung, L.-C. Chen, Shape-controlled synthesis of Cu based nanofluid using submerged arc nanoparticle synthesis system (SANSS). J. Crystal Growth. 277(1–4), 636–642 (2005)

    Article  Google Scholar 

  16. M. Wagener, B.S. Murty, B. Gunther, Preparation of metal nanosuspensions by high-pressure DC-sputtering on running liquids, in Nanocrystalline and Nanocomposite Materials II, ed. by S. Komarnenl, J.C. Parker, H.J. Wollenberger, vol. 457 (Materials Research Society, Pittsburgh, 1997), pp. 149–154

    Google Scholar 

  17. H.T. Zhu, Y.S. Lin, Y.S. Yin, A novel one-step chemical method for preparation of copper nanofluids. J. Colloid Interface Sci. 277, 100–103 (2004)

    Article  Google Scholar 

  18. E. Goharshadi, Y. Ding, M. Jorabchi, P. Nancarrow, Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid. Ultrason. Sonochem. 16(1), 120–123 (2009)

    Article  Google Scholar 

  19. D. Wen, Y. Ding, Formulation of nanofluids for natural convective heat transfer applications. Int. J. Heat Fluid Flow. 26(6), 855–864 (2005)

    Article  Google Scholar 

  20. L. Fedele, L. Colla, S. Bobbo, S. Barison, F. Agresti, Experimental stability analysis of different water-based nanofluids. Nanoscale Res. Lett. 6(1), 1–8 (2011)

    Article  Google Scholar 

  21. Y. Hwang et al., Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 186(2), 145–153 (2008)

    Article  Google Scholar 

  22. K.V. Chuistov, V.G. Trubachev, A.E. Perekos, V.C. Luk’yanov, V.D. Koval, Structure and properties of high dispersed particles obtained at ultrahigh velocity cooling. Metallofizika 10(1), 118–120 (1988)

    Google Scholar 

  23. V.Y. Rudyak, S.V. Dimov, V.V. Kuznetsov, S.P. Bardahanov, Measurement of the viscosity coefficient of an ethylene glycol–based nanofluid with silicon dioxide particles. Dokl. Phys. 58(5), 173–176 (2013)

    Article  Google Scholar 

  24. D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974)

    Google Scholar 

  25. V.Y. Rudyak, A.A. Belkin, D.A. Ivanov, V.V. Egorov, The simulation of transport processes using the method of molecular dynamics self-diffusion coefficient. High Temp. 46(1), 30–39 (2008)

    Article  Google Scholar 

  26. V.Y. Rudyak, Statistical Aerohydromechanics of Homogeneous and Heterogeneous Media. Hydromechanics. Civil Engineering, vol. 2 (University Press, Novosibirsk, 2005)

    Google Scholar 

  27. B.J. Alder, T.E. Wainwright, Decay of the velocity autocorrelation function. Phys. Rev. A 1, 18–21 (1970)

    Article  Google Scholar 

  28. V.Y. Rudyak, A.A. Belkin, D.A. Ivanov, V.V. Egorov, On the nonclassical diffusion of molecules of liquid and dense gases. Dokl. Phys. 52, 115–118 (2007)

    Article  Google Scholar 

  29. V.Y. Rudyak, A.A. Belkin, Noclassical properties of molecular diffusion in liquids and dense gases. Defect Diffus. Forum 273–276, 560–565 (2008)

    Google Scholar 

  30. A. Einstein, A new determination of molecular sizes. Ann. Phys. 19, 289–306 (1906)

    Article  Google Scholar 

  31. V.Y. Rudyak, A.A. Belkin, Nanoparticle velocity relaxation in condensed carrying medium. Tech. Phys. Lett. 29, 560–562 (2003)

    Article  Google Scholar 

  32. V.Y. Rudyak, G.V. Kharlamov, A.A. Belkin, The velocity autocorrelation function of nanoparticles in hard-sphere molecular system. Tech. Phys. Lett. 26, 553–556 (2000)

    Article  Google Scholar 

  33. V.Y. Rudyak, G.V. Kharlamov, A.A. Belkin, Diffusion of nanoparticles and macromolecules in dense gases and liquids. High Temp. 39, 264–271 (2001)

    Article  Google Scholar 

  34. F. Ould-Kaddour, D. Levesque, Diffusion of nanoparticles in dense fluids. J. Chem. Phys. 127, 154514 (2007)

    Article  Google Scholar 

  35. S.K. Friedlander, Smoke, Dust, Haze. Fundamentals of Aerosol Dynamics (Oxford University Press, New York/Oxford, 2000)

    Google Scholar 

  36. E.O. Knutson, History of diffusion batteries in aerosol measurements. Aerosol Sci. Technol. 31, 83–128 (1999)

    Article  Google Scholar 

  37. H.S. Epstein, In the resistance experienced by spheres in their motion through gases. Phys. Rev. 23, 710–733 (1924)

    Article  Google Scholar 

  38. L. Mädler, S.K. Friedlender, Transport of nanoparticles in gases: overview and recent advances. Aerosol Air Qual. Res. 7, 304–342 (2007)

    Google Scholar 

  39. W.F. Phillips, Drug on a small sphere moving through a gas. Phys. Fluids 18, 1089–1093 (1975)

    Article  Google Scholar 

  40. V.Y. Rudyak, S.L. Krasnolutskii, Kinetic description of nanoparticles diffusion in rarefied gases. Russian Phys. Dokl. (USA) 46, 1336–1339 (2001)

    Google Scholar 

  41. V.Y. Rudyak, S.L. Krasnolutsky, Diffusion of nanoparticles in a rarefied gas. Tech. Phys. 47(7), 807–813 (2002)

    Article  Google Scholar 

  42. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1952)

    Google Scholar 

  43. V.Ya. Rudyak, S.L. Krasnolutskii, The interaction potential of carrier gas molecules with dispersed particles, in Rarefied Gas Dynamics XXI. Proc. 21st Int. Symp. on RGD. Toulouse, Gépadués-Éditions, vol. 1, 1999, pp. 263–270

    Google Scholar 

  44. V.Y. Rudyak, S.L. Krasnolutskii, A.G. Nasibulin, E.I. Kauppinen, About measurement methods of nanoparticles sizes and diffusion coefficient. Doklady Phys. 47, 758–761 (2002)

    Article  Google Scholar 

  45. V.Y. Rudyak, S.N. Dubtsov, A.M. Baklanov, Temperature dependence of the diffusion coefficient of nano-particles. Tech. Phys. Lett. 34, 519–521 (2008)

    Article  Google Scholar 

  46. V.Y. Rudyak, S.N. Dubtsov, A.M. Baklanov, Measurements of the temperature dependent diffusion coefficient of nanoparticles in the range of 295–600 K at atmospheric pressure. J. Aerosol Sci. 40, 833–843 (2009)

    Article  Google Scholar 

  47. P.A. Baron, K. Willeke (eds.), Aerosol Measurement: Principles, Techniques, and Applications (Wiley, New York, 2001)

    Google Scholar 

  48. V.Y. Rudyak, S.L. Krasnolutskii, E.N. Ivashchenko, Influence of the physical properties of the material of nanoparticles on their diffusion in rarefied gases. J. Eng. Phys. Thermophys. 81, 520–524 (2008)

    Article  Google Scholar 

  49. J.H. Ferziger, H.G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam/London, 1972)

    Google Scholar 

  50. V.Y. Rudyak, S.L. Krasnolutskii, On thermal diffusion of nanoparticles in gases. Tech. Phys. 55(8), 1124–1127 (2010)

    Article  Google Scholar 

  51. E.A. Mason, R.J. Munn, F.J. Smith, Thermal diffusion in gases, in Advances in Atomic and Molecular Physics, ed. by D.R. Bates (Academic, New York, 1966), p. 484

    Google Scholar 

  52. K.E. Grew, J.N. Mundy, Thermal diffusion in some mixtures of inert gases. Phys. Fluids 4, 1325–1332 (1961)

    Article  Google Scholar 

  53. D.F. Evans, T. Tominaga, H.T. Davis, Tracer diffusion in polyatomic liquids. J. Chem. Phys. 74, 1298–1306 (1981)

    Article  Google Scholar 

  54. T. Kato, K. Kikuchi, Y.J. Achiba, Measurement of the self-diffusion coefficient of C60 in benzene-D6 using 13C pulsed-gradient spin echo. Phys. Chem. 97, 10251–10253 (1993)

    Article  Google Scholar 

  55. R. Haselmeyer et al., Translational diffusion in C60 and C70 fullerene solutions. Ber. Bunsenger Phys. Chem. 98, 878–881 (1994)

    Article  Google Scholar 

  56. W.P. Wuelfing et al., Taylor dispersion measurements of monolayer protected clusters: a physicochemical determination of nanoparticle size. Anal. Chem. 71, 4069–4074 (1999)

    Article  Google Scholar 

  57. R.W. Kowert et al., Size-dependent diffusion in cycloalkanes. Mol. Phys. 102, 1489–1497 (2004)

    Article  Google Scholar 

  58. M.J. Nuevo, J.J. Morales, D.M. Heyes, Hydrodynamic behaviour of a solute particle by molecular dynamics. Mol. Phys. 91, 769–774 (1997)

    Article  Google Scholar 

  59. F. Ould-Caddour, D. Levesque, Molecular-dynamics investigation of tracer diffusion in a simple liquid: test of the Stokes-Einstein law. Phys. Rev. E. 63, 011205 (2000)

    Article  Google Scholar 

  60. V.Ya. Rudyak, G.V. Kharlamov, and A.A. Belkin, Direct numerical simulation of transport processes in heterogeneous media. II. Diffusion of nanoparticles and macromolecules in dense gases and liquids (NGASU, Novosibirsk, 2000). (Preprint No. 1(13)-2000, Novosibirsk State University of Architecture and Civil Engineering)

    Google Scholar 

  61. V.Y. Rudyak, S.L. Krasnolutskii, D.A. Ivanov, Molecular dynamics simulation of nanoparticle diffusion in dense fluids. Microfluid. Nanofluid. 11(4), 501–506 (2011)

    Article  Google Scholar 

  62. I.M. Mahbubul, R. Saidur, M.A. Amalina, Latest developments on the viscosity of nanofluids. Int. J. Heat Mass Transfer. 55, 874–885 (2012)

    Article  Google Scholar 

  63. E.V. Timofeeva, D.S. Smith, W. Yu, D.M. France, D. Singh, J.L. Routbo, Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology 21, 215703 (2010). doi:10.1088/0957-4484/21/21/215703

    Article  Google Scholar 

  64. V.Y. Rudyak, S.V. Dimov, V.V. Kuznetsov, S.P. Bardakhanov, Measurement of the viscosity coefficient of an ethylene glycol–based nanofluid with silicon dioxide particles. Doklady Phys. 58(5), 173–176 (2013)

    Article  Google Scholar 

  65. V.Y. Rudyak, S.V. Dimov, V.V. Kuznetsov, About dependence of the nanofluid viscosity coefficient on the temperature and size of the particles. Tech. Phys. Lett. 39(17), 53–59 (2013)

    Google Scholar 

  66. V.Y. Rudyak, Viscosity of nanofluids. Why it is not described by the classical theories. Adv. Nanopart. 2(3), 266–279 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Ya. Rudyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Rudyak, V.Y. (2015). Diffusion of Nanoparticles in Gases and Liquids. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics