Skip to main content

Effect of Size and Functionalization of Pharmaceutical Nanoparticles and Their Interaction with Biological Systems

  • Living reference work entry
  • First Online:
Handbook of Nanoparticles

Abstract

This work reflects the need to have information on physicochemical properties of pharmaceutical nanoparticles and their interaction with biological systems, especially properties like particle size and surface functionalization that give special features when nanoparticles go through membranes, during opsonization, against immunogenicity, different toxicities, etc. This work aims to help new researchers to better understand the close relationship between pharmaceutical nanoparticles and their properties and their effects on biological systems and also contribute to nanotechnologists to take into account this situation and be aware that their responsibility does not end with the development and manufacture of these nanosystems.

This chapter was written for specialist in different areas to enrich its content, and it is not the vision of a single author. We collaborated in this document nanotechnologists, toxicologists, and pharmaceutical technologists to give a critical approach to the imminent progress of nanotechnology in many areas of the knowledge such as pharmaceuticals, cosmetics, foods, chemical industry, computer industry, etc. Interaction of nanoparticles with human tissues, plants, animals, soils, water, air, etc. is inevitable because in the future, nanoparticles will be an important source of pollution and we must know how they interact with the surroundings depending on their physicochemical properties. Currently, a new branch of Nanotechnology called Nanotoxicology has been developed to deal with these dilemmas and in the future will be much more important than nowadays. Standardized protocols must be established to evaluate the cytotoxicity and genotoxicity caused by nanostructures.

This work is dedicated to José Roberto, Paulina, and Ximena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BBB:

Blood–brain barrier

CBO-P11 or cyclo-VEGI:

Cyclopeptidic vascular endothelial growth inhibitor

DNA:

Deoxyribonucleic acid

EPR effect:

Enhanced permeability and retention effect

miRNA:

microRNA, small noncoding RNA molecule

nm:

Nanometer

P450:

Cytochrome P450

PAA:

Poly(acrylic acid)

pDNA:

Plasmid DNA

PEG:

Polyethylene glycol

P-gp:

P-glycoprotein

PVA:

Polyvinyl alcohol

PVDF:

Poly(vinylidene fluoride)

RME:

Receptor-mediated endocytosis

siRNA:

Small interfering RNA or silencing RNA

VEGF:

Vascular endothelial growth factor

μm:

Micrometer

References

  1. S.C. Abeylath, M.M. Amiji, ‘Click’ synthesis of dextran macrostructures for combinatorial-designed self-assembled nanoparticles encapsulating diverse anticancer therapeutics. Bioorg. Med. Chem. 19(21), 6167–6173 (2011)

    Article  Google Scholar 

  2. S.C. Abeylath, S. Ganta, A.K. Iyer, M. Amiji, Combinatorial-designed multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery. Acc. Chem. Res. 44(10), 1009–1017 (2011)

    Article  Google Scholar 

  3. A.F. Adler, K.W. Leong, Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. Nano Today 5(6), 553–569 (2010)

    Article  Google Scholar 

  4. F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5(4), 505–515 (2008)

    Article  Google Scholar 

  5. G. Barratt, Colloidal drug carriers: achievements and perspectives. Cell. Mol. Life Sci. 60(1), 21–37 (2003)

    Article  Google Scholar 

  6. M. Belting, S. Sandgren, A. Wittrup, Nuclear delivery of macromolecules: barriers and carriers. Adv. Drug Deliv. Rev. 57(4), 505–527 (2005)

    Article  Google Scholar 

  7. P. Borm, F.C. Klaessig, T.D. Landry, B. Moudgil, J. Pauluhn, K. Thomas et al., Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 90(1), 23–32 (2006)

    Article  Google Scholar 

  8. I. Brigger, C. Dubernet, P. Couvreur, Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54(5), 631–651 (2002)

    Article  Google Scholar 

  9. T. Cedervall, I. Lynch, M. Foy, T. Berggård, S.C. Donnelly, G. Cagney et al., Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem. Int. Ed. 46(30), 5754–5756 (2007)

    Article  Google Scholar 

  10. T. Cedervall, I. Lynch, S. Lindman, T. Berggård, E. Thulin, H. Nilsson et al., Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. 104(7), 2050–2055 (2007)

    Article  Google Scholar 

  11. F. Chen, D. Gerion, Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 4(10), 1827–1832 (2004)

    Article  Google Scholar 

  12. Z. Chen, H. Meng, G. Xing, C. Chen, Y. Zhao, G. Jia et al., Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 163(2), 109–120 (2006)

    Article  Google Scholar 

  13. B.D. Chithrani, A.A. Ghazani, W.C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6(4), 662–668 (2006)

    Article  Google Scholar 

  14. K.K. Cotí, M.E. Belowich, M. Liong, M.W. Ambrogio, Y.A. Lau, H.A. Khatib et al., Mechanised nanoparticles for drug delivery. Nanoscale 1(1), 16–39 (2009)

    Article  Google Scholar 

  15. P. Couvreur, C. Vauthier, Nanotechnology: intelligent design to treat complex disease. Pharm. Res. 23(7), 1417–1450 (2006)

    Article  Google Scholar 

  16. C. De Vries, J.A. Escobedo, H. Ueno, K. Houck, N. Ferrara, L.T. Williams, The FMS-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255(5047), 989–991 (1992)

    Article  Google Scholar 

  17. X. Deng, G. Jia, H. Wang, H. Sun, X. Wang, S. Yang et al., Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45(7), 1419–1424 (2007)

    Article  Google Scholar 

  18. A.M. Derfus, W.C. Chan, S.N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4(1), 11–18 (2004)

    Google Scholar 

  19. S. Deshayes, V. Maurizot, M. Clochard, C. Baudin, T. Berthelot, S. Esnouf et al., “Click” conjugation of peptide on the surface of polymeric nanoparticles for targeting tumor angiogenesis. Pharm. Res. 28(7), 1631–1642 (2011)

    Article  Google Scholar 

  20. M.A. Dobrovolskaia, S.E. McNeil, Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2(8), 469–478 (2007)

    Article  Google Scholar 

  21. K. Donaldson, R. Aitken, L. Tran, V. Stone, R. Duffin, G. Forrest et al., Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92(1), 5–22 (2006)

    Article  Google Scholar 

  22. R. Duncan, The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2(5), 347–360 (2003)

    Article  Google Scholar 

  23. U. Edlund, A. Albertsson, Degradable polymer microspheres for controlled drug delivery, in Degradable Aliphatic Polyesters (Springer, Berlin/Heidelberg, 2002), pp. 67–112

    Google Scholar 

  24. M.E. Eichhorn, S. Strieth, M. Dellian, Anti-vascular tumor therapy: recent advances, pitfalls and clinical perspectives. Drug Resist. Updat. 7(2), 125–138 (2004)

    Article  Google Scholar 

  25. M. Elsabahy, K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41(7), 2545–2561 (2012)

    Article  Google Scholar 

  26. M. Elsabahy, M. Zhang, S. Gan, K.C. Waldron, J. Leroux, Synthesis and enzymatic stability of PEGylated oligonucleotide duplexes and their self-assemblies with polyamidoamine dendrimers. Soft. Matter. 4(2), 294–302 (2008)

    Article  Google Scholar 

  27. S. Feng, G. Huang, Effects of emulsifiers on the controlled release of paclitaxel (Taxol®) from nanospheres of biodegradable polymers. J. Control. Release 71(1), 53–69 (2001)

    Article  Google Scholar 

  28. N. Ferrara, Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin. Oncol. 29(6), 10–14 (2002)

    Article  Google Scholar 

  29. N. Ferrara, T. Davis-Smyth, The biology of vascular endothelial growth factor. Endocr. Rev. 18(1), 4–25 (1997)

    Article  Google Scholar 

  30. N. Ferrara, K.J. Hillan, W. Novotny, Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun. 333(2), 328–335 (2005)

    Article  Google Scholar 

  31. A.T. Florence, A.M. Hillery, N. Hussain, P.U. Jani, Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J. Control. Release 36(1), 39–46 (1995)

    Article  Google Scholar 

  32. J. Folkman, Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971)

    Article  Google Scholar 

  33. T. Fujimoto, H. Kogo, R. Nomura, T. Une, Isoforms of caveolin-1 and caveolar structure. J. Cell Sci. 113(19), 3509–3517 (2000)

    Google Scholar 

  34. K. Fukukawa, R. Rossin, A. Hagooly, E.D. Pressly, J.N. Hunt, B.W. Messmore et al., Synthesis and characterization of core–shell star copolymers for in vivo PET imaging applications. Biomacromolecules 9(4), 1329–1339 (2008)

    Article  Google Scholar 

  35. S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 126(3), 187–204 (2008)

    Article  Google Scholar 

  36. A. Gessner, R. Waicz, A. Lieske, B. Paulke, K. Mäder, R. Müller, Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int. J. Pharm. 196(2), 245–249 (2000)

    Article  Google Scholar 

  37. A. Gessner, A. Lieske, B.R. Paulke, R.H. Müller, Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur. J. Pharm. Biopharm. 54(2), 165–170 (2002)

    Article  Google Scholar 

  38. A. Gessner, A. Lieske, B. Paulke, R.H. Müller, Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J. Biomed. Mater. Res. A 65(3), 319–326 (2003)

    Article  Google Scholar 

  39. J.J. Green, R. Langer, D.G. Anderson, A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41(6), 749–759 (2008)

    Article  Google Scholar 

  40. R. Haag, Supramolecular drug-delivery systems based on polymeric core–shell architectures. Angew. Chem. Int. Ed. 43(3), 278–282 (2004)

    Article  Google Scholar 

  41. S.M. Hussain, A.K. Javorina, A.M. Schrand, H.M. Duhart, S.F. Ali, J.J. Schlager, The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol. Sci. 92(2), 456–463 (2006)

    Article  Google Scholar 

  42. T. Iversen, T. Skotland, K. Sandvig, Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6(2), 176–185 (2011)

    Article  Google Scholar 

  43. M. José Alonso, Nanomedicines for overcoming biological barriers. Biomed. Pharmacother. 58(3), 168–172 (2004)

    Article  Google Scholar 

  44. H.M. Kipen, D.L. Laskin, Smaller is not always better: nanotechnology yields nanotoxicology. Am. J. Physiol. Lung Cell. Mol. Physiol. 289(5), L696–L697 (2005)

    Article  Google Scholar 

  45. T. Kojima, M. Hashida, S. Muranishi, H. Sezaki, Mitomycin C-dextran conjugate: a novel high molecular weight pro-drug of mitomycin C. J. Pharm. Pharmacol. 32(1), 30–34 (1980)

    Article  Google Scholar 

  46. C. Lam, J.T. James, R. McCluskey, R.L. Hunter, Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77(1), 126–134 (2004)

    Article  Google Scholar 

  47. M. LeFevre, J. Vanderhoff, J. Laissue, D. Joel, Accumulation of 2-μm latex particles in mouse Peyer’s patches during chronic latex feeding. Experientia 34(1), 120–122 (1978)

    Article  Google Scholar 

  48. Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 60(15), 1650–1662 (2008)

    Article  Google Scholar 

  49. M. Lück, B. Paulke, W. Schröder, T. Blunk, R. Müller, Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res. 39(3), 478–485 (1998)

    Article  Google Scholar 

  50. M. Lundqvist, I. Sethson, B. Jonsson, Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir 20(24), 10639–10647 (2004)

    Article  Google Scholar 

  51. M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. 105(38), 14265–14270 (2008)

    Article  Google Scholar 

  52. C. Medina, M. Santos-Martinez, A. Radomski, O. Corrigan, M. Radomski, Nanoparticles: pharmacological and toxicological significance. Br. J. Pharmacol. 150(5), 552–558 (2007)

    Article  Google Scholar 

  53. H. Meng, M. Xue, T. Xia, Y. Zhao, F. Tamanoi, J.F. Stoddart et al., Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 132(36), 12690–12697 (2010)

    Article  Google Scholar 

  54. L. Mu, S. Feng, Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol®). J. Control. Release 80(1), 129–144 (2002)

    Article  Google Scholar 

  55. L. Mu, S. Feng, A novel controlled release formulation for the anticancer drug. J. Control. Release 86, 33–48 (2003)

    Article  Google Scholar 

  56. L. Mu, S. Feng, PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and drug loading ratio. Pharm. Res. 20(11), 1864–1872 (2003)

    Article  Google Scholar 

  57. R.H. Müller, D. Rühl, M. Lück, B. Paulke, Influence of fluorescent labelling of polystyrene particles on phagocytic uptake, surface hydrophobicity, and plasma protein adsorption. Pharm. Res. 14(1), 18–24 (1997)

    Article  Google Scholar 

  58. G. Oberdörster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman et al., Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 2(1), 8 (2005)

    Article  Google Scholar 

  59. G. Oberdörster, E. Oberdörster, J. Oberdörster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7), 823 (2005)

    Article  Google Scholar 

  60. Y. Ohya, H. Oue, K. Nagatomi, T. Ouchi, Design of macromolecular prodrug of cisplatin using dextran with branched galactose units as targeting moieties to hepatoma cells. Biomacromolecules 2(3), 927–933 (2001)

    Article  Google Scholar 

  61. J. Panyam, V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55(3), 329–347 (2003)

    Article  Google Scholar 

  62. R.J. Papac, Origins of cancer therapy. Yale J. Biol. Med. 74(6), 391 (2001)

    Google Scholar 

  63. L.N. Patel, J.L. Zaro, W. Shen, Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm. Res. 24(11), 1977–1992 (2007)

    Article  Google Scholar 

  64. R.A. Petros, J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9(8), 615–627 (2010)

    Article  Google Scholar 

  65. K.W. Powers, S.C. Brown, V.B. Krishna, S.C. Wasdo, B.M. Moudgil, S.M. Roberts, Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol. Sci. 90(2), 296–303 (2006)

    Article  Google Scholar 

  66. M.R. Prausnitz, R. Langer, Transdermal drug delivery. Nat. Biotechnol. 26(11), 1261–1268 (2008)

    Article  Google Scholar 

  67. E.D. Pressly, R. Rossin, A. Hagooly, K. Fukukawa, B.W. Messmore, M.J. Welch et al., Structural effects on the biodistribution and positron emission tomography (PET) imaging of well-defined 64Cu-labeled nanoparticles comprised of amphiphilic block graft copolymers. Biomacromolecules 8(10), 3126–3134 (2007)

    Article  Google Scholar 

  68. A. Radomski, P. Jurasz, D. Alonso-Escolano, M. Drews, M. Morandi, T. Malinski et al., Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 146(6), 882–893 (2005)

    Article  Google Scholar 

  69. B.G. Ram, B.K. Unday, Nanoparticle Technology for Drug Delivery, 1st edn. (Taylor and Francis Group, New York, 2006)

    Google Scholar 

  70. S.T. Reddy, A.J. van der Vlies, E. Simeoni, V. Angeli, G.J. Randolph, C.P. O’Neil et al., Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25(10), 1159–1164 (2007)

    Article  Google Scholar 

  71. E. Ruoslahti, Targeting tumor vasculature with homing peptides from phage display. Semin. Cancer Biol. 10(6), 435–442 (2000)

    Article  Google Scholar 

  72. J.P. Ryman-Rasmussen, J.E. Riviere, N.A. Monteiro-Riviere, Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. Nano Lett. 7(5), 1344–1348 (2007)

    Article  Google Scholar 

  73. G. Sahay, D.Y. Alakhova, A.V. Kabanov, Endocytosis of nanomedicines. J. Control. Release 145(3), 182–195 (2010)

    Article  Google Scholar 

  74. E. Sanders, C. Ashworth, A study of particulate intestinal absorption and hepatocellular uptake: use of polystyrene latex particles. Exp. Cell Res. 22, 137–145 (1961)

    Article  Google Scholar 

  75. A. Shvedova, V. Castranova, E. Kisin, D. Schwegler-Berry, A. Murray, V. Gandelsman et al., Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003)

    Article  Google Scholar 

  76. I.I. Slowing, B.G. Trewyn, S. Giri, V. Lin, Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 17(8), 1225–1236 (2007)

    Article  Google Scholar 

  77. I.I. Slowing, J.L. Vivero-Escoto, C. Wu, V.S. Lin, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60(11), 1278–1288 (2008)

    Article  Google Scholar 

  78. G. Sun, A. Hagooly, J. Xu, A.M. Nyström, Z. Li, R. Rossin et al., Facile, efficient approach to accomplish tunable chemistries and variable biodistributions for shell cross-linked nanoparticles. Biomacromolecules 9(7), 1997–2006 (2008)

    Article  Google Scholar 

  79. B.I. Terman, M. Dougher-Vermazen, M.E. Carrion, D. Dimitrov, D.C. Armellino, D. Gospodarowicz et al., Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187(3), 1579–1586 (1992)

    Article  Google Scholar 

  80. B.G. Trewyn, I.I. Slowing, S. Giri, H. Chen, V.S. Lin, Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc. Chem. Res. 40(9), 846–853 (2007)

    Article  Google Scholar 

  81. J.S. Tsuji, A.D. Maynard, P.C. Howard, J.T. James, C. Lam, D.B. Warheit et al., Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol. Sci. 89(1), 42–50 (2006)

    Article  Google Scholar 

  82. A. Verma, O. Uzun, Y. Hu, Y. Hu, H. Han, N. Watson et al., Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 7(7), 588–595 (2008)

    Article  Google Scholar 

  83. J.L. Vila Jato, Nanotecnología Farmacéutica: Una galénica emergente, in Discursos (Real Academia Nacional de Farmacia, Madrid España, 2009)

    Google Scholar 

  84. K. Yin Win, S. Feng, Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26(15), 2713–2722 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge to the projects UNAM-DGAPA, PAPIIT IN219715 and UNAM-FESC, PIAPIC-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Ramírez-Noguera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Díaz-Torres, R., López-Arellano, R., Escobar-Chávez, J.J., García-García, E., Domínguez-Delgado, .L., Ramírez-Noguera, P. (2015). Effect of Size and Functionalization of Pharmaceutical Nanoparticles and Their Interaction with Biological Systems. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics