Skip to main content

Bio-Functionalized Metallic Nanoparticles with Applications in Medicine

  • Living reference work entry
  • First Online:
Handbook of Nanoparticles

Abstract

Due to their special physicochemical, optical, and biological properties, noble metal nanoparticles have huge potential for application in many different biological and medical areas, such as highly sensitive diagnostic assay, thermal ablation, radiotherapy, or carriers for drugs and gene delivery. This chapter selectively reviews the bio-functionalization of metallic nanoparticles and their recent applications in medicine. The chapter is divided into four sections: Introduction, Bioconjugation of Metallic Nanoparticles, Cancer Therapy, and Gene Delivery. After a short introduction, we present few general strategies for bioconjugation of metallic nanoparticles: physisorption, physisorption using mediator molecules, covalent binding of biomolecules to cross-linkers, covalent binding of biomolecules to nanoparticles, and linking of biotinylated biomolecules to streptavidin-functionalized nanoparticles. The third section presents the recent advances in cancer therapy based on two strategies: passive targeting and antibody targeting, using functionalized gold nanoparticles. The fourth section describes the gene delivery process, by which foreign DNA is introduced into the host cells. The process typically involves the formation of transient pores or “holes” into the cell membrane, which allows the uptake of foreign material. The main aspects that are discussed about the gene delivery process are the stealth character and the targeted recognition of tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J.H. Grossman, S.E. McNeil, Nanotechnology in cancer medicine. Phys. Today 65(8), 38–42 (2012)

    Article  Google Scholar 

  2. N.R. Panyala, E.M. Peña-Méndez, J. Havel, Gold and nano-gold in medicine: overview, toxicology and perspectives. J. Appl. Biomed. 7, 75–91 (2009)

    Google Scholar 

  3. G. Han, P. Ghosh, M. De, V.M. Rotello, Drug and gene delivery using gold nanoparticles. Nanobiotechnology 3, 40–45 (2007)

    Article  Google Scholar 

  4. P. Jain, V. Aggarwal, Synthesis, characterization and antimicrobial effects of silver nanoparticles from microorganisms-a review. Int. J. Nano Mater. Sci. 1(2), 108–120 (2012)

    Google Scholar 

  5. H.M. Chen, R.-S. Liu, Architecture of metallic nanostructures: synthesis strategy and specific applications. J. Phys. Chem. C 115, 3513–3527 (2011)

    Article  Google Scholar 

  6. S. Parveen, R. Misra, S.K. Sahoo, Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotechnol. Biol. Med. 8, 147–166 (2012)

    Article  Google Scholar 

  7. S.K. Murthy, Nanoparticles in modern medicine: state of the art and future challenges. Int. J. Nanomedicine 2(2), 129–141 (2007)

    Google Scholar 

  8. P.M. Tiwari, K. Vig, V.A. Dennis, S.R. Singh, Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1, 31–63 (2011)

    Article  Google Scholar 

  9. L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41, 2256–2282 (2012)

    Article  Google Scholar 

  10. A. Ravindran, P. Chandran, S.S. Khan, Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf. B Biointerfaces 105, 342–352 (2013)

    Article  Google Scholar 

  11. H.I. Labouta, M. Schneider, Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomed. Nanotechnol. Biol. Med. 9, 39–54 (2013)

    Article  Google Scholar 

  12. F.M. Veronese, M. Morpurgo, Bioconjugation in pharmaceutical chemistry. Farmaco 54(8), 497–516 (1999)

    Article  Google Scholar 

  13. M.J. Murcia, C.A. Naumann, Chapter 1: Biofunctionalization of fluorescent nanoparticles, in Nanotechnologies for the Life Sciences, ed. by C.S.S.R. Kumar. Biofunctionalization of Nanomaterials, vol. 1 (Wiley, Weinheim, 2005), p. 12

    Google Scholar 

  14. G.P. Mitchell, C.A. Mirkin, R.L. Letsinger, Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121(35), 8122–8123 (1999)

    Article  Google Scholar 

  15. C.Y. Zhang, H. Ma, S.M. Nie, Y. Ding, L. Jin, D.Y. Chen, Quantum dot-labeled trichosanthin. Analyst 125, 1029–1031 (2000)

    Article  Google Scholar 

  16. D.M. Willard, L.L. Carillo, J. Jung, A. Van Orden, CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett. 1(9), 469–474 (2001)

    Article  Google Scholar 

  17. E.R. Goldman, E.D. Balighian, H. Mattoussi, M.K. Kuno, J.M. Mauro, P.T. Tran, G.P. Anderson, Avidin: a natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 124(22), 6378–6382 (2002)

    Article  Google Scholar 

  18. M. Baeumle, D. Stamou, J.M. Segura, R. Hovius, H. Vogel, Vitro sliding of actin filaments labelled with single quantum dots. Langmuir 314(2), 529–534 (2004)

    Google Scholar 

  19. K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14(5), 1310–1316 (2008)

    Article  Google Scholar 

  20. V.P. Zharov, J.-W. Kim, D.T. Curiel, Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 1(4), 326–345 (2005)

    Article  Google Scholar 

  21. W. Zhao, C.F.L. Jeffrey, W. Chiuman, M.A. Brook, Y. Li, Enzymatic cleavage of nucleic acid on gold nanoparticle: a generic platform for facile biosensors. Small 4, 810–816 (2008)

    Article  Google Scholar 

  22. A.L. Simonian, T.A. Good, S.-S. Wang, J.R. Wild, Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal. Chim. Acta 534(1), 69–77 (2005)

    Article  Google Scholar 

  23. G. Mie, Contribution to the optics of turbid media, especially colloidal metal suspensions. Ann. Phys. 25(3), 377–445 (1908)

    Article  Google Scholar 

  24. G.C. Papavassiliou, Optical properties of small inorganic and organic metal particles. Prog. Sol. State Chem. 12, 185 (1979)

    Article  Google Scholar 

  25. S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103(40), 8410–8426 (1999)

    Article  Google Scholar 

  26. S. Link, M.A. El-Sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103(21), 4212–4217 (1999)

    Article  Google Scholar 

  27. S. Link, M.A. El-Sayed, Shape and size dependence of radiative, nonradiative, and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409–453 (2000)

    Article  Google Scholar 

  28. A. Moores, F. Goettmann, The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J. Chem. 30, 1121–1132 (2006)

    Article  Google Scholar 

  29. P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006)

    Article  Google Scholar 

  30. H. Du, R.A. Fuh, J. Li, A. Corkan, J.S. Lindsey, PhotochemCAD: a computer-aided design and research tool in photochemistry. Photochem. Photobiol. 68, 141–142 (1998)

    Google Scholar 

  31. H. Xiaohua, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008)

    Article  Google Scholar 

  32. C.J. Gannon, C.R. Patra, R. Bhattacharya, P. Mukherjee, S.A. Curley, Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 6, 2–9 (2008)

    Article  Google Scholar 

  33. D. Pissuwan, S.M. Valenzuela, M.B. Cortie, Therapeutic possibilities of plasmonically heated gold nanoparticles. TRENDS Biotechnol. 24(2), 62–67 (2006)

    Article  Google Scholar 

  34. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 114(3), 343–347 (2006)

    Article  Google Scholar 

  35. H. Liao, J.H. Hafner, Gold nanorod bioconjugate. Chem. Mater. 17(18), 4636–4641 (2005)

    Article  Google Scholar 

  36. D.P. O’Neal, L.R. Hirsch, N.J. Halas, J.D. Payne, J.L. West, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209(2), 171–176 (2004)

    Article  Google Scholar 

  37. J.M. Stern, J. Stanfield, Y. Lotan, S. Park, J.T. Hsieh, J.A. Cadeddu, Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro. J. Endourol. 21(8), 939–943 (2007)

    Article  Google Scholar 

  38. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271–284 (2000)

    Article  Google Scholar 

  39. H. Maeda, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–284 (2001)

    Article  Google Scholar 

  40. H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int. Immunopharmacol. 3, 319–328 (2003)

    Article  Google Scholar 

  41. J. Fang, T. Sawa, H. Maeda, Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv. Exp. Med. Biol. 519, 29–49 (2003)

    Article  Google Scholar 

  42. G.F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R.E. McLaughlin, L. Tamarkin, Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11(3), 169–183 (2004)

    Article  Google Scholar 

  43. K. Greish, T. Sawa, J. Fang, T. Akaike, H. Maeda, SMA-doxorubicin, a new polymeric micellar drug for effective targeting to solid tumours. J. Control. Release 97(2), 219–230 (2004)

    Article  Google Scholar 

  44. I.H. El-Sayed, X. Huang, M.A. El-Sayed, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239(1), 129–135 (2006)

    Article  Google Scholar 

  45. X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol. 82(2), 412–417 (2006)

    Article  Google Scholar 

  46. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63(9), 1999–2004 (2003)

    Google Scholar 

  47. K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillanwater, M. Follen, C. Macaulay, K. Adler-Storthz, B. Korgel, M. Discour, R. Pasqualini, W. Arap, W. Lam, R. Richartz-Kortum, Optical systems for in vivo molecular imaging of cancer. Technol. Cancer Res. Treat. 2(6), 491–504 (2003)

    Article  Google Scholar 

  48. X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128(6), 2115–2120 (2006)

    Article  Google Scholar 

  49. R.J. North, E.A. Havell, The antitumor function of tumor necrosis factor (TNF) II. Analysis of the role of endogenous TNF in endotoxin-induced hemorrhagic necrosis and regression of an established sarcoma. J. Exp. Med. 167(3), 1086–1099 (1988)

    Article  Google Scholar 

  50. R. Kircheis, E. Ostermann, M.F. Wolschek, C. Lichtenberger, C. Magin-Lachmann, L. Wightman, M. Kursa, E. Wagner, Tumor-targeted gene delivery of tumor necrosis factor-alpha induces tumor necrosis and tumor regression without systemic toxicity. Cancer Gene Ther. 9(8), 673–680 (2002)

    Article  Google Scholar 

  51. U. Hieber, M.E. Heim, Tumor necrosis factor for the treatment of malignancies. Oncology 51, 142–153 (1994)

    Article  Google Scholar 

  52. D. Kim, S. Jon, Gold nanoparticles in image-guided cancer therapy. Inorg. Chim. Acta 393, 154–164 (2012)

    Article  Google Scholar 

  53. A.V. Titomirov, S. Sukharev, E. Kistanova, In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim. Biophys. Acta 1088(1), 131–134 (1991)

    Article  Google Scholar 

  54. P.E. Huber, P. Pfisterer, In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther. 7(17), 1516–1525 (2000)

    Article  Google Scholar 

  55. F. Liu, Y.K. Song, D. Liu, Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266 (1999)

    Article  Google Scholar 

  56. H. Aihara, J. Miyazaki, Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16(9), 867–870 (1998)

    Article  Google Scholar 

  57. R. Heller, M. Jaroszesli, A. Atkin, D. Moradpoer, R. Gilbert, J. Wamds, C. Nicolau, In vivo gene electroinjection and expression in rat liver. FEBS Lett. 389, 225–228 (1996)

    Article  Google Scholar 

  58. T. Kawano, M. Yamagata, H. Takahashi, Y. Niidome, S. Yamada, Y. Katayama, T. Niidome, Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses. J. Control. Release 111, 382–389 (2006)

    Article  Google Scholar 

  59. S.H. Lee, K.H. Bae, S.H. Kim, K.R. Lee, T.G. Park, Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm. 364(1), 94–101 (2008)

    Article  Google Scholar 

  60. D. Pissuwan, T. Niidome, M.B. Cortie, The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 149, 65–71 (2011)

    Article  Google Scholar 

  61. J.M. Knipe, J.T. Peters, N.A. Peppas, Theranostic agents for intracellular gene delivery with spatiotemporal imaging. Nano Today 8, 21–38 (2013)

    Article  Google Scholar 

  62. P.S. Ghosh, C.-K. Kim, G. Han, N.S. Forbes, V.M. Rotello, Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2(11), 2213–2218 (2008)

    Article  Google Scholar 

  63. S. Guo, Y. Huang, Q. Jiang, Y. Sun, L. Deng, Z. Liang, Q. Du, J. Xing, Y. Zhao, P.C. Wang, A. Dong, X.-J. Liang, Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4(9), 5505–5511 (2010)

    Article  Google Scholar 

  64. Y. Shan, T. Luo, C. Peng, R. Sheng, A. Cao, X. Cao, M. Shen, R. Guo, H. Tomás, X. Shi, Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 33, 3025–3035 (2012)

    Article  Google Scholar 

  65. G. Chen, M. Takezawa, N. Kawazoe, T. Tateishi, Preparation of cationic gold nanoparticles for gene delivery. Open Biotechnol. J. 2, 152–156 (2008)

    Article  Google Scholar 

  66. M. Stobiecka, M. Hepel, Double-shell gold nanoparticle-based DNA-carriers with poly-L-lysine binding surface. Biomaterials 32, 3312–3321 (2011)

    Article  Google Scholar 

  67. S.-M. Ryou, J.-M. Kim, J.-H. Yeom, S. Hyun, S. Kim, M.S. Han, S.W. Kim, J. Bae, S. Rhee, K. Lee, Gold nanoparticle-assisted delivery of small, highly structured RNA into the nuclei of human cells. Biochem. Biophys. Res. Commun. 416, 178–183 (2011)

    Article  Google Scholar 

  68. R. Ghosh, L.C. Singh, J.M. Shohet, P.H. Gunaratne, A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 34, 807–816 (2013)

    Article  Google Scholar 

  69. E.-Y. Kim, R. Schulz, P. Swantek, K. Kunstman, M.H. Malim, S.M. Wolinsky, Gold nanoparticle-mediated gene delivery induces widespread changes in the expression of innate immunity genes. Gene Ther. 19, 347–353 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by grants of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, Project Number PN-II-ID-PCE-2011-3-0125 and PN-II-PT-PCCA-2013-4-1282 (230/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stela Pruneanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Pruneanu, S., Coroş, M., Pogacean, F. (2015). Bio-Functionalized Metallic Nanoparticles with Applications in Medicine. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics