Skip to main content

Biomediated Atomic Metal Nanoclusters: Synthesis and Theory

  • Living reference work entry
  • First Online:
Handbook of Nanoparticles

Abstract

Fluorescent metal nanoclusters are an emerging class of multifunctional materials engineered at the single-atom level, with dimensions approaching the Fermi wavelength of electrons that offer competitive functionalities of traditional semiconductor QDs including tunable emission, ease of conjugation, extended photostability, and high quantum yield. With the additional advantages of being composed of nontoxic/biocompatible materials, function with a fraction of the metal content, greatly reduced size for enhanced cellular uptake, opportunity for two-photon absorption at biologically relevant wavelengths, and demonstrated renal evacuation efficacy for in vivo applications, metal nanoclusters hold substantial promise. More recently the development of hybrid atomic cluster synthesis routes has expanded the materials’ multifunctional capabilities. This chapter will summarize the current high-yield synthesis and functionalization strategies for producing monodisperse pure metal and hybrid nanocluster materials from both wet chemistry and newly developed biomediated nanocluster synthesis methodologies, involving protein and DNA hosts. The role of the bio-host and surface functional groups on the nanoclusters formation, stability, and physical properties will be detailed through recent experimental and theoretical simulation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D.M. Chevrier, A. Chatt, P. Zhang, Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review. J. Nanophotonics 6, 064504–1 (2012)

    Article  Google Scholar 

  2. L. Shang, S.J. Dong, G.U. Nienhaus, Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6, 401–418 (2011)

    Article  Google Scholar 

  3. C.T. Chen, W.J. Chen, C.Z. Liu, L.Y. Chang, Y.C. Chen, Glutathione-bound gold nanoclusters for selective-binding and detection of glutathione S-transferase-fusion proteins from cell lysates. Chem. Commun. 7515–7517 (2009). http://pubs.rsc.org/en/content/articlelanding/2009/cc/b916919a/unauth#!divAbstract

  4. D. Hu, Z. Sheng, P. Gong, P. Zhang, L. Cai, Highly selective fluorescent sensors for Hg(2+) based on bovine serum albumin-capped gold nanoclusters. Analyst 135, 1411–1416 (2010)

    Article  Google Scholar 

  5. L. Shang, R.M. Dorlich, S. Brandholt, R. Schneider, V. Trouillet, M. Bruns, D. Gerthsen, G.U. Nienhaus, Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 3, 2009–2014 (2011)

    Article  Google Scholar 

  6. L. Hu, S. Han, S. Parveen, Y. Yuan, L. Zhang, G. Xu, Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens. Bioelectron. 32, 297–299 (2012)

    Article  Google Scholar 

  7. L. Shang, R.M. Dorlich, S. Brandholt, N. Azadfar, G.U. Nienhaus, Facile synthesis of fluorescent gold nanoclusters and their application in cellular imaging. Colloidal Nanocryst. Biomed. Appl. Vii. 8232, 82321J-1–82321J-7 (2012)

    Google Scholar 

  8. P.H. Chan, B. Ghosh, H.Z. Lai, H.L. Peng, K.K. Mong, Y.C. Chen, Photoluminescent gold nanoclusters as sensing probes for uropathogenic Escherichia coli. PLoS One 8, e58064 (2013)

    Article  Google Scholar 

  9. H. Chen, B. Li, C. Wang, X. Zhang, Z. Cheng, X. Dai, R. Zhu, Y. Gu, Characterization of a fluorescence probe based on gold nanoclusters for cell and animal imaging. Nanotechnology 24, 055704 (2013)

    Article  Google Scholar 

  10. H. Zhang, Q. Liu, T. Wang, Z. Yun, G. Li, J. Liu, G. Jiang, Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. Anal. Chim. Acta 770, 140–146 (2013)

    Article  Google Scholar 

  11. T. Hasobe, H. Imahori, P.V. Kamat, T.K. Ahn, S.K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S. Fukuzumi, Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 127, 1216–1228 (2005)

    Article  Google Scholar 

  12. J. Zheng, P.R. Nicovich, R.M. Dickson, Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 58, 409–431 (2007)

    Article  Google Scholar 

  13. J. Zheng, C. Zhang, R.M. Dickson, Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 93, 077402 (2004)

    Article  Google Scholar 

  14. H. Kawasaki, K. Hamaguchi, I. Osaka, R. Arakawa, pH-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv. Funct. Mater. 21, 3508–3515 (2011)

    Article  Google Scholar 

  15. H. Qian, M. Zhu, Z. Wu, R. Jin, Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45, 1470–1479 (2012)

    Article  Google Scholar 

  16. R. Jin, Y. Zhu, H. Qian, Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chem. Eur. J. 17, 6584–6593 (2011)

    Article  Google Scholar 

  17. H. Xu, K.S. Suslick, Water-soluble fluorescent silver nanoclusters. Adv. Mater. 22, 1078–1082 (2010)

    Article  Google Scholar 

  18. J.P. Wilcoxon, J.E. Martin, F. Parsapour, B. Wiedenman, D.F. Kelley, Photoluminescence from nanosize gold clusters. J. Chem. Phys. 108, 9137–9143 (1998)

    Article  Google Scholar 

  19. Q. Wang, Y. Xu, X. Zhao, Y. Chang, Y. Liu, L. Jiang, J. Sharma, D.K. Seo, H. Yan, A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation. J. Am. Chem. Soc. 129, 6380–6381 (2007)

    Article  Google Scholar 

  20. A.R. Mahmoudi, E. Shaban, R. Ghods, M. Jeddi-Tehrani, S. Emami, H. Rabbani, A.H. Zarnani, J. Mahmoudian, Comparison of photostability and photobleaching properties of FITC- and dylight488- conjugated herceptin. Int. J. Green Nanotechnol. 3, 264–270 (2011)

    Article  Google Scholar 

  21. D. Landgraf, B. Okumus, P. Chien, T.A. Baker, J. Paulsson, Segregation of molecules at cell division reveals native protein localization. Nat. Methods 9, 480–U98 (2012)

    Article  Google Scholar 

  22. A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  Google Scholar 

  23. M. Nirmal, B.O. Dabbousi, M.G. Bawendi, J.J. Macklin, J.K. Trautman, T.D. Harris, L.E. Brus, Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996)

    Article  Google Scholar 

  24. F. Pinaud, D. King, H.P. Moore, S. Weiss, Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115–6123 (2004)

    Article  Google Scholar 

  25. W.Y. Chen, G.Y. Lan, H.T. Chang, Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem. 83, 9450–9455 (2011)

    Article  Google Scholar 

  26. H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, Y. Lu, Lysozyme-stabilized gold fluorescent cluster: synthesis and application as Hg(2+) sensor. Analyst 135, 1406–1410 (2010)

    Article  Google Scholar 

  27. X. Le Guevel, N. Daum, M. Schneider, Synthesis and characterization of human transferrin-stabilized gold nanoclusters. Nanotechnology 22, 275103 (2011)

    Article  Google Scholar 

  28. J. Xie, Y. Zheng, J.Y. Ying, Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131, 888–889 (2009)

    Article  Google Scholar 

  29. G. Liu, Y. Shao, K. Ma, Q. Cui, F. Wu, S. Xu, Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bull. 45, 69–74 (2012)

    Article  Google Scholar 

  30. G. Liu, Y. Shao, F. Wu, S. Xu, J. Peng, L. Liu, DNA-hosted fluorescent gold nanoclusters: sequence-dependent formation. Nanotechnology 24, 015503 (2013)

    Article  Google Scholar 

  31. J.T. Petty, J. Zheng, N.V. Hud, R.M. Dickson, DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 126, 5207–5212 (2004)

    Article  Google Scholar 

  32. L. Shang, S. Brandholt, F. Stockmar, V. Trouillet, M. Bruns, G.U. Nienhaus, Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small 8, 661–665 (2012)

    Article  Google Scholar 

  33. C.L. Liu, H.T. Wu, Y.H. Hsiao, C.W. Lai, C.W. Shih, Y.K. Peng, K.C. Tang, H.W. Chang, Y.C. Chien, J.K. Hsiao, J.T. Cheng, P.T. Chou, Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angew. Chem. Int. Ed. Engl. 50, 7056–7060 (2011)

    Article  Google Scholar 

  34. B. Han, E. Wang, DNA-templated fluorescent silver nanoclusters. Anal. Bioanal. Chem. 402, 129–138 (2012)

    Article  Google Scholar 

  35. T.A. Kennedy, J.L. MacLean, J. Liu, Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH. Chem. Commun. (Camb.) 48, 6845–6847 (2012)

    Article  Google Scholar 

  36. X. Yuan, Z.T. Luo, Q.B. Zhang, X.H. Zhang, Y.G. Zheng, J.Y. Lee, J.P. Xie, Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 5, 8800–8808 (2011)

    Article  Google Scholar 

  37. T. Udayabhaskararao, T. Pradeep, New protocols for the synthesis of stable Ag and Au nanocluster molecules. J. Phys. Chem. Lett. 4, 1553–1564 (2013)

    Article  Google Scholar 

  38. T. Udayabhaskararao, Y. Sun, N. Goswami, S.K. Pal, K. Balasubramanian, T. Pradeep, Ag7Au6: A 13-atom alloy quantum cluster. Angew. Chem. Int. Ed. 51, 2155–2159 (2012)

    Article  Google Scholar 

  39. I. Chakraborty, T. Udayabhaskararao, T. Pradeep, High temperature nucleation and growth of glutathione protected [similar]Ag75 clusters. Chem. Commun. 48, 6788–6790 (2012)

    Article  Google Scholar 

  40. X.D. Zhang, D. Wu, X. Shen, P.X. Liu, F.Y. Fan, S.J. Fan, In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33, 4628–4638 (2012)

    Article  Google Scholar 

  41. X. Mu, L. Qi, P. Dong, J. Qiao, J. Hou, Z. Nie, H. Ma, Facile one-pot synthesis of l-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosens. Bioelectron. 49, 249–255 (2013)

    Article  Google Scholar 

  42. L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, G.U. Nienhaus, One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 7, 2614–2620 (2011)

    Article  Google Scholar 

  43. A. Gultekin, S.E. Diltemiz, A. Ersoz, N.Y. Sariozlu, A. Denizli, R. Say, Gold-silver nanoclusters having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition. Talanta 78, 1332–1338 (2009)

    Article  Google Scholar 

  44. K.S. Park, M.I. Kim, M.A. Woo, H.G. Park, A label-free method for detecting biological thiols based on blocking of Hg(2+)-quenching of fluorescent gold nanoclusters. Biosens. Bioelectron. 45, 65–69 (2013)

    Article  Google Scholar 

  45. X. Yuan, Y. Yu, Q. Yao, Q. Zhang, J. Xie, Fast synthesis of thiolated Au25 nanoclusters via protection–deprotection method. J. Phys. Chem. Lett. 3, 2310–2314 (2012)

    Article  Google Scholar 

  46. Y. Cai, L. Yan, G. Liu, H. Yuan, D. Xiao, In-situ synthesis of fluorescent gold nanoclusters with electrospun fibrous membrane and application on Hg (II) sensing. Biosens. Bioelectron. 41, 875–879 (2013)

    Article  Google Scholar 

  47. Y. Chen, Y. Wang, C. Wang, W. Li, H. Zhou, H. Jiao, Q. Lin, C. Yu, Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu(2+). J. Colloid Interface Sci. 396, 63–68 (2013)

    Article  Google Scholar 

  48. A.R. Garcia, I. Rahn, S. Johnson, R. Patel, J. Guo, J. Orbulescu, M. Micic, J.D. Whyte, P. Blackwelder, R.M. Leblanc, Human insulin fibril-assisted synthesis of fluorescent gold nanoclusters in alkaline media under physiological temperature. Colloids Surf. B Biointerfaces 105, 167–172 (2013)

    Article  Google Scholar 

  49. K. Chaudhari, P.L. Xavier, T. Pradeep, Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano 5, 8816–8827 (2011)

    Article  Google Scholar 

  50. E.G. Gwinn, P. O’Neill, A.J. Guerrero, D. Bouwmeester, D.K. Fygenson, Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv. Mater. 20, 279–283 (2008)

    Article  Google Scholar 

  51. L. Guiying, S. Yong, W. Fei, X. Shujuan, P. Jian, L. Lingling, DNA-hosted fluorescent gold nanoclusters: sequence-dependent formation. Nanotechnology 24, 015503 (2013)

    Article  Google Scholar 

  52. H.-C. Yeh, J. Sharma, J.J. Han, J.S. Martinez, J.H. Werner, A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett. 10, 3106–3110 (2010)

    Article  Google Scholar 

  53. P.R. O’Neill, L.R. Velazquez, D.G. Dunn, E.G. Gwinn, D.K. Fygenson, Hairpins with poly-C loops stabilize four types of fluorescent Agn:DNA. J. Phys. Chem. C 113, 4229–4233 (2009)

    Article  Google Scholar 

  54. S. Pal, J. Sharma, H. Yan, and Y. Liu, Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters. Chem. Commun. (Camb.). 6059–6061 (2009). http://pubs.rsc.org/en/content/articlelanding/2009/cc/b911069k/unauth#!divAbstract

  55. J. Li, X. Zhong, H. Zhang, X.C. Le, J.-J. Zhu, Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. Anal. Chem. 84, 5170–5174 (2012)

    Article  Google Scholar 

  56. Y.-T. Su, G.-Y. Lan, W.-Y. Chen, H.-T. Chang, Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Anal. Chem. 82, 8566–8572 (2010)

    Article  Google Scholar 

  57. J. Zheng, R.M. Dickson, Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc. 124, 13982–13983 (2002)

    Article  Google Scholar 

  58. F. Gröhn, B.J. Bauer, Y.A. Akpalu, C.L. Jackson, E.J. Amis, Dendrimer templates for the formation of gold nanoclusters. Macromolecules 33, 6042–6050 (2000)

    Article  Google Scholar 

  59. X. Sun, S. Dong, E. Wang, One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 37, 7105–7108 (2004)

    Article  Google Scholar 

  60. J. Zheng, J.T. Petty, R.M. Dickson, High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc. 125, 7780–7781 (2003)

    Article  Google Scholar 

  61. P.H. Chan, Y.C. Chen, Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Anal. Chem. 84, 8952–8956 (2012)

    Google Scholar 

  62. H. Duan, S. Nie, Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 129, 2412–2413 (2007)

    Article  Google Scholar 

  63. R. Jin, H. Qian, Z. Wu, Y. Zhu, M. Zhu, A. Mohanty, N. Garg, Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 1, 2903–2910 (2010)

    Article  Google Scholar 

  64. J.P. Wilcoxon, P. Provencio, Etching and aging effects in nanosize Au clusters investigated using high-resolution size-exclusion chromatography. J. Phys. Chem. B 107, 12949–12957 (2003)

    Article  Google Scholar 

  65. C.-A.J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J.K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, W.H. Chang, Review: synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges. J. Med. Biol. Eng. 29, 276–283 (2009)

    Google Scholar 

  66. M. Duan, Y. Peng, L. Zhang, X. Wang, J. Ge, J. Jiang, R. Yu, DNA-stabilized silver nanoclusters with guanine-enhanced fluorescence as a novel indicator for enzymatic detection of cholesterol. Anal. Methods 5, 2182–2187 (2013)

    Google Scholar 

  67. R. Zhou, M. Shi, X. Chen, M. Wang, H. Chen, Atomically monodispersed and fluorescent sub-nanometer gold clusters created by biomolecule-assisted etching of nanometer-sized gold particles and rods. Chem. Eur. J. 15, 4944–4951 (2009)

    Article  Google Scholar 

  68. B. Sengupta, K. Springer, J.G. Buckman, S.P. Story, O.H. Abe, Z.W. Hasan, Z.D. Prudowsky, S.E. Rudisill, N.N. Degtyareva, J.T. Petty, DNA templates for fluorescent silver clusters and I-motif folding. J. Phys. Chem. C 113, 19518–19524 (2009)

    Article  Google Scholar 

  69. I. Diez, R.H.A. Ras, Fluorescent silver nanoclusters. Nanoscale 3, 1963–1970 (2011)

    Article  Google Scholar 

  70. G. Liu, D.-Q. Feng, T. Chen, D. Li, W. Zheng, DNA-templated formation of silver nanoclusters as a novel light-scattering sensor for label-free copper ions detection. J. Mater. Chem. 22, 20885–20888 (2012)

    Article  Google Scholar 

  71. M.K. Shukla, M. Dubey, E. Zakar, J. Leszczynski, DFT investigation of the interaction of gold nanoclusters with nucleic acid base guanine and the Watson-Crick guanine-cytosine base pair. J. Phys. Chem. C 113, 3960–3966 (2009)

    Article  Google Scholar 

  72. S. Anandan, S.-D. Oh, M. Yoon, M. Ashokkumar, Photoluminescence properties of sonochemically synthesized gold nanoparticles for DNA biosensing. Spectrochim. Acta A Mol. Biomol. Spectrosc. 76, 191–196 (2010)

    Article  Google Scholar 

  73. A. Kumar, P.C. Mishra, S. Suhai, Binding of gold clusters with DNA base pairs: a density functional study of neutral and anionic GC− Aun and AT− Aun (n = 4, 8) complexes. J. Phys. Chem. A 110, 7719–7727 (2006)

    Article  Google Scholar 

  74. G.-Y. Lan, W.-Y. Chen, H.-T. Chang, One-pot synthesis of fluorescent oligonucleotide Ag nanoclusters for specific and sensitive detection of DNA. Biosens. Bioelectron. 26, 2431–2435 (2011)

    Article  Google Scholar 

  75. S.H. Yau, N. Abeyasinghe, M. Orr, L. Upton, O. Varnavski, J.H. Werner, H.-C. Yeh, J. Sharma, A.P. Shreve, J.S. Martinez, T. Goodson Iii, Bright two-photon emission and ultra-fast relaxation dynamics in a DNA-templated nanocluster investigated by ultra-fast spectroscopy. Nanoscale 4, 4247–4254 (2012)

    Article  Google Scholar 

  76. P.R. Selvakannan, A. Swami, D. Srisathiyanarayanan, P.S. Shirude, R. Pasricha, A.B. Mandale, M. Sastry, Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir 20, 7825–7836 (2004)

    Google Scholar 

  77. G.A. Elder, A. Cristian, Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care. Mount Sinai J. Med. 76, 111–118 (2009)

    Article  Google Scholar 

  78. Z.W.H. Wei, J. Zhang, S. House, Y.G. Gao, L. Yang, H. Robinson, L.H. Tan, H. Xing, C. Hou, I.M. Robertson, J.M. Zuo, Y. Lu, Nature nanotechnology. Nat. Nanotechnol. 6, 93–97 (2011)

    Article  Google Scholar 

  79. M.B. Dickerson, K.H. Sandhage, R.R. Naik, Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 108, 4935–4978 (2008)

    Article  Google Scholar 

  80. J.P.K. Glusker, A.K. Katz, C.W. Bock, Metal ions in biological systems. Rigaku J. 16, 9–17 (1999)

    Google Scholar 

  81. N. Goswami, A. Giri, M.S. Bootharaju, P.L. Xavier, T. Pradeep, S.K. Pal, Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal. Chem. 83, 9676–9680 (2011)

    Article  Google Scholar 

  82. J. Xie, Y. Zheng, J.Y. Ying, Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+ − Au+ interactions. Chem. Commun. 46, 961–963 (2010)

    Article  Google Scholar 

  83. M. Zhang, Y.Q. Dang, T.Y. Liu, H.W. Li, Y.Q. Wu, Q. Li, K. Wang, B. Zou, Pressure-induced fluorescence enhancement of the BSA-protected gold nanoclusters and the corresponding conformational changes of protein. J. Phys. Chem. C 117, 639–647 (2013)

    Article  Google Scholar 

  84. P. Masson, High Pressure and Biotechnology, vol. 224 (Colloque INSERM/John Libbey Eurotext Ltd, Montrouge, 1992)

    Google Scholar 

  85. F. Wen, Y.H. Dong, L. Feng, S. Wang, S.C. Zhang, X.R. Zhang, Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem. 83, 1193–1196 (2011)

    Article  Google Scholar 

  86. R. Braun, M. Sarikaya, K. Schulten, Genetically engineered gold-binding polypeptides: structure prediction and molecular dynamics. J. Biomater. Sci. Polym. Ed. 13, 747–757 (2002)

    Article  Google Scholar 

  87. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  Google Scholar 

  88. E. Lindahl, B. Hess, D. van der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol. Model. Annu. 7, 306–317 (2001)

    Google Scholar 

  89. Accelrys Software Inc., Discovery Studio Modeling Environment, Release 4.0, San Diego: Accelrys Software Inc., (2007)

    Google Scholar 

  90. S. Plimpton, P. Crozier, A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia National Laboratories 18, (2007)

    Google Scholar 

  91. Available: http://lammps.sandia.gov. Accessed Aug 2013

  92. A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins†. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  Google Scholar 

  93. D. Case, T. Darden, T. Cheatham III, C. Simmerling, J. Wang, R. Duke, R. Luo, R. Walker, W. Zhang, K. Merz, AMBER 12 (University of California, San Francisco, 2012)

    Google Scholar 

  94. P.M. Agrawal, B.M. Rice, D.L. Thompson, Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surf. Sci. 515, 21–35 (2002)

    Article  Google Scholar 

  95. O.-S. Lee, G.C. Schatz, Interaction between DNAs on a gold surface. J. Phys. Chem. C 113, 15941–15947 (2009)

    Article  Google Scholar 

  96. O.-S. Lee, G.C. Schatz, Molecular dynamics simulation of DNA-functionalized gold nanoparticles. J. Phys. Chem. C 113, 2316–2321 (2009)

    Article  Google Scholar 

  97. P.K. Samanta, G. Periyasamy, A.K. Manna, S.K. Pati, Computational studies on structural and optical properties of single-stranded DNA encapsulated silver/gold clusters. J. Mater. Chem. 22, 6774–6781 (2012)

    Article  Google Scholar 

  98. S. Piana, A. Bilic, The nature of the adsorption of nucleobases on the gold [111] surface. J. Phys. Chem. B 110, 23467–23471 (2006)

    Article  Google Scholar 

  99. H. Heinz, R.A. Vaia, B.L. Farmer, R.R. Naik, Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials. J. Phys. Chem. C 112, 17281–17290 (2008)

    Article  Google Scholar 

  100. J. Feng, R.B. Pandey, R.J. Berry, B.L. Farmer, R.R. Naik, H. Heinz, Adsorption mechanism of single amino acid and surfactant molecules to Au {111} surfaces in aqueous solution: design rules for metal-binding molecules. Soft Matter 7, 2113–2120 (2011)

    Article  Google Scholar 

  101. F. Iori, R. Di Felice, E. Molinari, S. Corni, GolP: an atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J. Comput. Chem. 30, 1465–1476 (2009)

    Article  Google Scholar 

  102. L.B. Wright, P.M. Rodger, S. Corni, T.R. Walsh, GolP-CHARMM: first-principles based force fields for the interaction of proteins with Au(111) and Au(100). J. Chem. Theory Comput. 9, 1616–1630 (2013)

    Article  Google Scholar 

  103. D.B. Kokh, S. Corni, P.J. Winn, M. Hoefling, K.E. Gottschalk, R.C. Wade, ProMetCS: an atomistic force field for modeling protein − metal surface interactions in a continuum aqueous solvent. J. Chem. Theory Comput. 6, 1753–1768 (2010)

    Article  Google Scholar 

  104. J. Yu, M.L. Becker, G.A. Carri, The influence of amino acid sequence and functionality on the binding process of peptides onto gold surfaces. Langmuir 28, 1408–1417 (2011)

    Article  Google Scholar 

  105. J. Yu, M.L. Becker, G.A. Carri, A molecular dynamics simulation of the stability-limited growth mechanism of peptide-mediated gold-nanoparticle synthesis. Small 6, 2242–2245 (2010)

    Article  Google Scholar 

  106. E. Heikkilä, A.A. Gurtovenko, H. Martinez-Seara, H. Häkkinen, I. Vattulainen, J. Akola, Atomistic simulations of functional Au144(SR)60 gold nanoparticles in aqueous environment. J. Phys. Chem. C 116, 9805–9815 (2012)

    Article  Google Scholar 

  107. W.R. French, C.R. Iacovella, P.T. Cummings, The influence of molecular adsorption on elongating gold nanowires. J. Phys. Chem. C 115, 18422–18433 (2011)

    Article  Google Scholar 

  108. G. Brancolini, D.B. Kokh, L. Calzolai, R.C. Wade, S. Corni, Docking of ubiquitin to gold nanoparticles. ACS Nano 6, 9863–9878 (2012)

    Article  Google Scholar 

  109. L. Ren, L. Cheng, Structural prediction of (Au20)N (N = 2–40) clusters and their building-up principle. Comput. Theor. Chem. 984, 142–147 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Griep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Griep, M.H., West, A.L., Sellers, M.S., Karna, M., Zhan, E., Hoque, N. (2015). Biomediated Atomic Metal Nanoclusters: Synthesis and Theory. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics