Skip to main content

Applications of Nanoparticles in Mass Spectrometry for Highly Sensitive Analysis

  • Living reference work entry
  • First Online:
Handbook of Nanoparticles

Abstract

Mass spectrometry (MS) has been one of the most successful analytical techniques as it could provide highly sensitive detection and molecular structure information by recording MS or even MSn spectra. For MS analysis, efficient ionization, interference-free detection, and development of new ionization sources are of great concern in the fields of analytical and bioanalytical chemistry. Nanoparticles (NPs), with large surface area, specific physical and chemical properties, as well as techniques of controllable synthesis and functionalization, begin to attract more and more attentions for their potential application in MS analysis. On the one hand, NPs are useful matrixes in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS), mainly benefitting from their strong light absorption in wide range. Compared with conventional organic matrixes, NPs can eliminate the “sweet spots” and provide high signals in low-mass region. Besides, after functionalized with recognition ligands, NPs would gain a strong affinity to analytes, thus enriching the target compounds and improving the detection sensitivity. So far, silicon NPs, metallic NPs, metal oxide NPs, and carbon-based NPs have demonstrated their applicability in SALDI-MS, which are summarized in the following text. On the other hand, NPs can also be used for the development of new ionization sources. Nanostructure-initiator mass spectrometry (NIMS) is a novel spatially defined mass analysis technique that uses “initiator” molecules trapped in nanostructured surfaces to release and ionize samples on the surface. Owing to the advantages of high lateral resolution, high sensitivity, matrix-free, and reduced fragmentation, it is now widely used in biochemical analysis and tissue imaging. Based on the survey of literature, the authors also discussed the prospective of NPs used in MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AgNPs:

Silver nanoparticles

Au@AgNPs:

Silver-coated gold nanoparticles

AuNPs:

Gold nanoparticles

CHCA:

a-cyano-4-hydroxycinnamic acid

CNT:

Carbon nanotube

CVD:

Chemical vapor deposition

DESI:

Desorption electrospray ionization

DHB:

2,5-dihydroxybenzoic acid

DIOS:

Desorption/ionization on silicon

GeND:

Germanium nanodots

GO:

Graphene oxide

HAS:

Human serum albumin

LODs:

Limit of detections

MALDI:

Matrix-assisted laser desorption/ionization

MPCs:

Monolayer-protected gold clusters

MRI:

Magnetic resonance imaging

MS:

Mass spectrometry

MSI:

Mass spectrometry imaging

MWCNTs:

Multiwall carbon nanotubes

NIMS:

Nanostructure-initiator mass spectrometry

NPs:

Nanoparticles

NW:

Nanowire

OCNTs:

Oxidized carbon nanotubes

PANI:

Polyaniline

PECVD:

Plasma-enhanced chemical vapor deposition

PET:

Positron emission computed tomography

SA:

Sinapinic acid

SALDI:

Surface-assisted laser desorption/ionization

SIMS:

Secondary ion mass spectrometry

References

  1. M. Karas, F. Hillenkamp, Anal. Chem. 60, 2299–2301 (1988)

    Google Scholar 

  2. D.J. Harvey, Mass Spectrom. Rev. 18, 349–450 (1999)

    Google Scholar 

  3. M.W.F. Nielen, Mass Spectrom. Rev. 18, 309–344 (1999)

    Google Scholar 

  4. C. Fenselau, P.A. Demirev, Mass Spectrom. Rev. 20, 157–171 (2001)

    Google Scholar 

  5. J.O. Lay, Mass Spectrom. Rev. 20, 172–194 (2001)

    Google Scholar 

  6. K. Tang, D. Opalsky, K. Abel, D. van den Boom, P. Yip, G. Del Mistro, A. Braun, C.R. Cantor, Int. J. Mass Spectrom. 226, 37–54 (2003)

    Google Scholar 

  7. R. Knochenmuss, Analyst 131, 966–986 (2006)

    Google Scholar 

  8. R. Zenobi, R. Knochenmuss, Mass Spectrom. Rev. 17, 337–366 (1998)

    Google Scholar 

  9. T.K. Sau, A.L. Rogach, Adv. Mater. 22, 1781–1804 (2010)

    Google Scholar 

  10. C. Chang, X. Wang, Y. Bai, H. Liu, TrAC Trends Anal. Chem. 39, 195–206 (2012)

    Google Scholar 

  11. C.K. Chiang, W.T. Chen, H.T. Chang, Chem. Soc. Rev. 40, 1269–1281 (2011)

    Google Scholar 

  12. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yashida, Rapid Commun. Mass Spectrom. 2, 151–153 (1988)

    Google Scholar 

  13. M. Schurenberg, K. Dreisewerd, F. Hillenkamp, Anal. Chem. 71, 221–229 (1999)

    Google Scholar 

  14. J. Wei, J.M. Buriak, G. Siuzdak, Nature 399, 243–246 (1999)

    Google Scholar 

  15. D.S. Peterson, Mass Spectrom. Rev. 26, 19–34 (2007)

    Google Scholar 

  16. K.P. Law, J.R. Larkin, Anal. Bioanal. Chem. 399, 2597–2622 (2011)

    Google Scholar 

  17. Z.X. Shen, J.J. Thomas, C. Averbuj, K.M. Broo, M. Engelhard, J.E. Crowell, M.G. Finn, G. Siuzdak, Anal. Chem. 73, 612–619 (2001)

    Google Scholar 

  18. A. Gorecka-Drzazga, S. Bargiel, R. Walczak, J.A. Dziuban, A. Kraj, T. Dylag, J. Silberring, Sens. Actuators B Chem. 103, 206–212 (2004)

    Google Scholar 

  19. S. Tuomikoski, K. Huikko, K. Grigoras, P. Ostman, R. Kostiainen, M. Baumann, J. Abian, T. Kotiaho, S. Franssila, Lab Chip 2, 247–253 (2002)

    Google Scholar 

  20. J.D. Cuiffi, D.J. Hayes, S.J. Fonash, K.N. Brown, A.D. Jones, Anal. Chem. 73, 1292–1295 (2001)

    Google Scholar 

  21. T. Seino, H. Sato, A. Yamamoto, A. Nemoto, M. Torimura, H. Tao, Anal. Chem. 79, 4827–4832 (2007)

    Google Scholar 

  22. N.H. Finkel, B.G. Prevo, O.D. Velev, L. He, Anal. Chem. 77, 1088–1095 (2005)

    Google Scholar 

  23. Y. Coffinier, S. Janel, A. Addad, R. Blossey, L. Gengembre, E. Payen, R. Boukherroub, Langmuir 23, 1608–1611 (2007)

    Google Scholar 

  24. G.H. Luo, Y. Chen, H. Daniels, R. Dubrow, A. Vertes, J. Phys. Chem. B 110, 13381–13386 (2006)

    Google Scholar 

  25. E.P. Go, J.V. Apon, G.H. Luo, A. Saghatelian, R.H. Daniels, V. Sahi, R. Dubrow, B.F. Cravatt, A. Vertes, G. Siuzdak, Anal. Chem. 77, 1641–1646 (2005)

    Google Scholar 

  26. X. Li, P.W. Bohn, Appl. Phys. Lett. 77, 2572–2574 (2000)

    Google Scholar 

  27. R.A. Kruse, X.L. Li, P.W. Bohn, J.V. Sweedler, Anal. Chem. 73, 3639–3645 (2001)

    Google Scholar 

  28. Q. Li, A. Ricardo, S.A. Benner, J.D. Winefordner, D.H. Powell, Anal. Chem. 77, 4503–4508 (2005)

    Google Scholar 

  29. C.W. Tsao, P. Kumar, J.K. Liu, L. Devoe, Anal. Chem. 80, 2973–2981 (2008)

    Google Scholar 

  30. G. Piret, H. Drobecq, Y. Coffinier, O. Melnyk, R. Boukherroub, Langmuir 26, 1354–1361 (2010)

    Google Scholar 

  31. G. Piret, Y. Coffinier, C. Roux, O. Melnyk, R. Boukherroub, Langmuir 24, 1670–1672 (2008)

    Google Scholar 

  32. K.P. Law, Int. J. Mass Spectrom. 290, 47–59 (2010)

    Google Scholar 

  33. H. Yan, N. Xu, W.Y. Huang, H.M. Han, S.J. Xiao, Int. J. Mass Spectrom. 281, 1–7 (2009)

    Google Scholar 

  34. M. Dupre, C. Enjalbal, S. Cantel, J. Martinez, N. Megouda, T. Hadjersi, R. Boukherroub, Y. Coffinier, Anal. Chem. 84, 10637–10644 (2012)

    Google Scholar 

  35. S.H. Kim, A. Lee, J.Y. Song, S.Y. Han, J. Am. Soc. Mass Spectrom. 23, 935–941 (2012)

    Google Scholar 

  36. S.H. Kim, J. Kim, D.W. Moon, S.Y. Han, J. Am. Soc. Mass Spectrom. 24, 167–170 (2013)

    Google Scholar 

  37. Q.C. Zhang, H.F. Zou, Z. Guo, Q. Zhang, X.M. Chen, J.Y. Ni, Rapid Commun. Mass Spectrom. 15, 217–223 (2001)

    Google Scholar 

  38. M. Dupre, S. Cantel, J.O. Durand, J. Martinez, C. Enjalbal, Anal. Chim. Acta 741, 47–57 (2012)

    Google Scholar 

  39. K. Agrawal, H.F. Wu, Rapid Commun. Mass Spectrom. 22, 283–290 (2008)

    Google Scholar 

  40. Y.F. Sha, C.H. Deng, B.Z. Liu, J. Chromatogr. A 1198, 27–33 (2008)

    Google Scholar 

  41. A.Y. Lim, F. Gu, Z. Ma, J. Ma, F. Rowell, Analyst 136, 2775–2785 (2011)

    Google Scholar 

  42. P.X. Zhao, X.F. Guo, H. Wang, C.B. Qi, H.S. Xia, H.S. Zhang, Anal. Bioanal. Chem. 402, 1041–1056 (2012)

    Google Scholar 

  43. Z.C. Xiong, L.Y. Zhang, R.S. Zhang, Y.R. Zhang, J.H. Chen, W.B. Zhang, J. Sep. Sci. 35, 2430–2437 (2012)

    Google Scholar 

  44. J.A. McLean, K.A. Stumpo, D.H. Russell, J. Am. Chem. Soc. 127, 5304–5305 (2005)

    Google Scholar 

  45. F. Gamez, P. Hurtado, P.M. Castillo, C. Caro, A.R. Hortal, P. Zaderenko, B. Martinez-Haya, Plasmonics 5, 125–133 (2010)

    Google Scholar 

  46. M.C. Wahl, H.S. Kim, T.D. Wood, S.H. Guan, A.G. Marshall, Anal. Chem. 65, 3669–3676 (1993)

    Google Scholar 

  47. R. Nayak, D.R. Knapp, Anal. Chem. 79, 4950–4956 (2007)

    Google Scholar 

  48. B.N.Y. Vanderpuije, G. Han, V.M. Rotello, R.W. Vachet, Anal. Chem. 78, 5491–5496 (2006)

    Google Scholar 

  49. J. Tang, Y.C. Liu, D.W. Qi, G.P. Yao, C.H. Deng, X.M. Zhang, Proteomics 9, 5046–5055 (2009)

    Google Scholar 

  50. C.H. Teng, K.C. Ho, Y.S. Lin, Y.C. Chen, Anal. Chem. 76, 4337–4342 (2004)

    Google Scholar 

  51. T.C. Chiu, L.C. Chang, C.K. Chiang, H.T. Chang, J. Am. Soc. Mass Spectrom. 19, 1343–1346 (2008)

    Google Scholar 

  52. M.T. Wang, M.H. Liu, C.R.C. Wang, S.Y. Chang, J. Am. Soc. Mass Spectrom. 20, 1925–1932 (2009)

    Google Scholar 

  53. H. Kawasaki, T. Yonezawa, T. Watanabe, R. Arakawa, J. Phys. Chem. C 111, 16278–16283 (2007)

    Google Scholar 

  54. T. Yonezawa, H. Kawasaki, A. Tarui, T. Watanabe, R. Arakawa, T. Shimada, F. Mafune, Anal. Sci. 25, 339–346 (2009)

    Google Scholar 

  55. H. Kawasaki, T. Yao, T. Suganuma, K. Okumura, Y. Iwaki, T. Yonezawa, T. Kikuchi, R. Arakawa, Chem. Eur. J. 16, 10832–10843 (2010)

    Google Scholar 

  56. H. Sonderegger, C. Rameshan, H. Lorenz, F. Klauser, M. Klerks, M. Rainer, R. Bakry, C.W. Huck, G.K. Bonn, Anal. Bioanal. Chem. 401, 1963–1974 (2011)

    Google Scholar 

  57. G. Piret, D. Kim, H. Drobecq, Y. Coffinier, O. Melnyk, P. Schmuki, R. Boukherroub, Analyst 137, 3058–3063 (2012)

    Google Scholar 

  58. C.T. Chen, Y.C. Chen, Anal. Chem. 77, 5912–5919 (2005)

    Google Scholar 

  59. K.-H. Lee, C.-K. Chiang, Z.-H. Lin, H.-T. Chang, Rapid Commun. Mass Spectrom. 21, 2023–2030 (2007)

    Google Scholar 

  60. T.-C. Chiu, Talanta 86, 415–420 (2011)

    Google Scholar 

  61. T. Watanabe, K. Okumura, K. Nozaki, H. Kawasaki, R. Arakawa, Rapid Commun. Mass Spectrom. 23, 3886–3890 (2009)

    Google Scholar 

  62. K. Shrivas, T. Hayasaka, Y. Sugiura, M. Setou, Anal. Chem. 83, 7283–7289 (2011)

    Google Scholar 

  63. T. Watanabe, H. Kawasaki, T. Yonezawa, R. Arakawa, J. Mass Spectrom. 43, 1063–1071 (2008)

    Google Scholar 

  64. W.J. Shin, J.H. Shin, J.Y. Song, S.Y. Han, J. Am. Soc. Mass Spectrom. 21, 989–992 (2010)

    Google Scholar 

  65. W.-Y. Chen, Y.-C. Chen, Anal. Bioanal. Chem. 386, 699–704 (2006)

    Google Scholar 

  66. Y. Iwaki, H. Kawasaki, R. Arakawa, Anal. Sci. 28, 893–900 (2012)

    Google Scholar 

  67. M.J. Yuan, Z. Shan, B.Z. Tian, B. Tu, P.Y. Yang, D.Y. Zhao, Microporous Mesoporous Mater. 78, 37–41 (2005)

    Google Scholar 

  68. Y. Gholipour, S.L. Giudicessi, H. Nonami, R. Erra-Balsells, Anal. Chem. 82, 5518–5526 (2010)

    Google Scholar 

  69. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555–2558 (1999)

    Google Scholar 

  70. J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A.H. Windle, Polymer 40, 5967–5971 (1999)

    Google Scholar 

  71. S. Berber, Y.K. Kwon, D. Tomanek, Phys. Rev. Lett. 84, 4613–4616 (2000)

    Google Scholar 

  72. M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Phys. Rev. Lett. 84, 5552–5555 (2000)

    Google Scholar 

  73. S.Y. Xu, Y.F. Li, H.F. Zou, J.S. Qiu, Z. Guo, B.C. Guo, Anal. Chem. 75, 6191–6195 (2003)

    Google Scholar 

  74. W.Y. Chen, L.S. Wang, H.T. Chiu, Y.C. Chen, C.Y. Lee, J. Am. Soc. Mass Spectrom. 15, 1629–1635 (2004)

    Google Scholar 

  75. S.F. Ren, Y.L. Guo, Rapid Commun. Mass Spectrom. 19, 255–260 (2005)

    Google Scholar 

  76. C.S. Pan, S.Y. Xu, L.G. Hu, X.Y. Su, J.J. Ou, H.F. Zou, Z. Guo, Y. Zhang, B.C. Guo, J. Am. Soc. Mass Spectrom. 16, 883–892 (2005)

    Google Scholar 

  77. J. Meng, C. Shi, C. Deng, Chem. Commun. 47, 11017–11019 (2011)

    Google Scholar 

  78. S.-F. Ren, Y.-L. Guo, J. Am. Soc. Mass Spectrom. 17, 1023–1027 (2006)

    Google Scholar 

  79. K. Shrivas, H.-F. Wu, J. Mass Spectrom. 45, 1452–1460 (2010)

    Google Scholar 

  80. X.-S. Li, J.-H. Wu, L.-D. Xu, Q. Zhao, Y.-B. Luo, B.-F. Yuan, Y.-Q. Feng, Chem. Commun. 47, 9816–9818 (2011)

    Google Scholar 

  81. S. Margadonna, K. Prassides, J. Solid State Chem. 168, 639–652 (2002)

    Google Scholar 

  82. J.H. Schon, C. Kloc, T. Siegrist, M. Steigerwald, C. Svensson, B. Batlogg, Nature 413, 831–833 (2001)

    Google Scholar 

  83. J. Havel, J. Soto-Guerrero, J. Radioanal. Nucl. Chem. 263, 489–492 (2005)

    Google Scholar 

  84. G. Montsko, A. Vaczy, G. Maasz, E. Mernyak, E. Frank, C. Bay, Z. Kadar, R. Ohmacht, J. Wolfling, L. Mark, Anal. Bioanal. Chem. 395, 869–874 (2009)

    Google Scholar 

  85. J.T. Shiea, J.P. Huang, C.F. Teng, J.Y. Jeng, L.Y. Wang, L.Y. Chiang, Anal. Chem. 75, 3587–3595 (2003)

    Google Scholar 

  86. M.V. Ugarov, T. Egan, D.V. Khabashesku, J.A. Schultz, H.Q. Peng, V.N. Khabashesku, H. Furutani, K.S. Prather, H.W.J. Wang, S.N. Jackson, A.S. Woods, Anal. Chem. 76, 6734–6742 (2004)

    Google Scholar 

  87. R.M. Vallant, Z. Szabo, L. Trojer, M. Najam-ul-Haq, M. Rainer, C.W. Huck, R. Bakry, G.K. Bonn, J. Proteome Res. 6, 44–53 (2007)

    Google Scholar 

  88. D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, Angew. Chem. Int. Ed. 49, 9336–9344 (2010)

    Google Scholar 

  89. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Google Scholar 

  90. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Google Scholar 

  91. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Google Scholar 

  92. X. Dong, J. Cheng, J. Li, Y. Wang, Anal. Chem. 82, 6208–6214 (2010)

    Google Scholar 

  93. M. Lu, Y. Lai, G. Chen, Z. Cai, Anal. Chem. 83, 3161–3169 (2011)

    Google Scholar 

  94. L.A.L. Tang, J. Wang, K.P. Loh, J. Am. Chem. Soc. 132, 10976–10977 (2010)

    Google Scholar 

  95. J. Zhang, X. Dong, J. Cheng, J. Li, Y. Wang, J. Am. Soc. Mass Spectrom. 22, 1294–1298 (2011)

    Google Scholar 

  96. C.-W. Liu, M.-W. Chien, C.-Y. Su, H.-Y. Chen, L.-J. Li, C.-C. Lai, Analyst 137, 5809–5816 (2012)

    Google Scholar 

  97. X. Zhou, Y. Wei, Q. He, F. Boey, Q. Zhang, H. Zhang, Chem. Commun. 46, 6974 (2010)

    Google Scholar 

  98. J. Liu, Y. Liu, M. Gao, X. Zhang, J. Am. Soc. Mass Spectrom. 23, 1424–1427 (2012)

    Google Scholar 

  99. B. Gulbakan, E. Yasun, M.I. Shukoor, Z. Zhu, M. You, X. Tan, H. Sanchez, D.H. Powell, H. Dai, W. Tan, J. Am. Chem. Soc. 132, 17408–17410 (2010)

    Google Scholar 

  100. J. Lee, Y.-K. Kim, D.-H. Min, J. Am. Chem. Soc. 132, 14714–14717 (2010)

    Google Scholar 

  101. C. Shi, J. Meng, C. Deng, Chem. Commun. 48, 2418–2420 (2012)

    Google Scholar 

  102. C. Shi, J. Meng, C. Deng, J. Mater. Chem. 22, 20778–20785 (2012)

    Google Scholar 

  103. B.N.G. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, Science 312, 217–224 (2006)

    Google Scholar 

  104. T.K. Lewellen, Phys. Med. Biol. 53, R287–R317 (2008)

    Google Scholar 

  105. M.L. Zierhut, E. Ozturk-Isik, A.P. Chen, I. Park, D.B. Vigneron, S.J. Nelson, J. Magn. Reson. Imaging 30, 473–480 (2009)

    Google Scholar 

  106. E.R.A. van Hove, D.F. Smith, R.M.A. Heeren, J. Chromatogr. A 1217, 3946–3954 (2010)

    Google Scholar 

  107. K. Chughtai, R.M.A. Heeren, Chem. Rev. 110, 3237–3277 (2010)

    Google Scholar 

  108. G. Slodzian, B. Daigne, F. Girard, F. Boust, F. Hillion, Biol. Cell 74, 43–50 (1992)

    Google Scholar 

  109. Z. Takats, J.M. Wiseman, B. Gologan, R.G. Cooks, Science 306, 471–473 (2004)

    Google Scholar 

  110. T.R. Northen, O. Yanes, M.T. Northen, D. Marrinucci, W. Uritboonthai, J. Apon, S.L. Golledge, A. Nordstrom, G. Siuzdak, Nature 449, 1033–U1033 (2007)

    Google Scholar 

  111. O. Yanes, H.K. Woo, T.R. Northen, S.R. Oppenheimer, L. Shriver, J. Apon, M.N. Estrada, M.J. Potchoiba, R. Steenwyk, M. Manchester, G. Siuzdak, Anal. Chem. 81, 2969–2975 (2009)

    Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (grant No. 21027012, 21175005 and 21275012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huwei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Chang, C. et al. (2015). Applications of Nanoparticles in Mass Spectrometry for Highly Sensitive Analysis. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics