Skip to main content

Formation of Nanoparticles and Decoration of Organic Crystals

  • Living reference work entry
  • First Online:
Handbook of Nanoparticles

Abstract

In the last decades, nanoparticles have been of great research interest due to their unique quantum size effect and optical, electronic, magnetic, and supramolecular properties.

In recent year, the face-selective adhesion of gold nanoparticles onto the crystal faces of organic crystals, also called “decoration” has been reported for first time. The organic single crystals may have surfaces with different chemical nature, allowing the opportunity to explore a wide variety of composite materials with highlights on anisotropic properties.

The metal nanoparticle preparation methods can be classified as chemical and physical methods. Chemical methods consist mainly in the decomposition or precipitation of inorganic salts. For example, it is possible to obtain gold nanoparticles from a gold precursor like HAuCl4. Physical methods involve principally the production of gas phase atoms or clusters by diving of the bulk material. Other remarkable preparation method is the sputtering, where a high-purity metal target is bombarded with argon ions, followed by the subsequent deposition of the sputtered metal atoms on the surface of a substrate support to create a uniform dispersion of nanoparticles. This technique has some advantages over other preparation methods like the no contamination from solvent or precursor molecules on the surface. Also, the process is economical and environmentally friendly, since the metal excess is recoverable from the chamber and without liquid waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2, 36–50 (2006)

    Article  Google Scholar 

  2. X. Zhang, Q. Guo, D. Cui, Recent advances in nanotechnology applied to biosensors. Sensors 9(2), 1033–1053 (2009)

    Article  Google Scholar 

  3. R. Wilson, The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 37, 2028–2045 (2008)

    Article  Google Scholar 

  4. A. Corma, H. Garcia, Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37(9), 2096–2126 (2008)

    Article  Google Scholar 

  5. G. Schmid, U. Simon, Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem. Commun. 6, 697–710 (2005)

    Article  Google Scholar 

  6. G.M. Veith, A.R. Lupini, S.J. Pennycook, G.W. Ownby, N.J. Dudney, Nanoparticles of gold on γ-Al2O3 produced by dc magnetron sputtering. J. Catal. 231(1), 151–158 (2005)

    Article  Google Scholar 

  7. J. Turkevich, P.C. Stevenson, J. Hillier, The formation of colloidal gold. J. Phys. Chem. 57(7), 670–673 (1953)

    Article  Google Scholar 

  8. S. Chen, K. Kimura, A new strategy for the synthesis of semiconductor–metal hybrid nanocomposites: electrostatic self-assembly of nanoparticles. Chem. Lett. 3, 233–234 (1999)

    Article  Google Scholar 

  9. K.J. Watson, J. Zhu, S.T. Nguyen, C.A. Mirkin, Hybrid nanoparticles with block copolymer shell structures. J. Am. Chem. Soc. 121(2), 462–463 (1999)

    Article  Google Scholar 

  10. P. Asanithi, S. Chaiyakun, P. Limsuwan, Growth of silver nanoparticles by DC magnetron sputtering. Dig. J. Nanomater. (2012). doi:10.1155/2012/963609

    Google Scholar 

  11. L. Barrientos, N. Yutronic, F. del Monte, M.C. Gutiérrez, P. Jara, Ordered arrangement of gold nanoparticles on α-cyclodextrins-dodecanethiol inclusion compound produced by magnetron sputtering. New J. Chem. 31(8), 1400–1402 (2007)

    Article  Google Scholar 

  12. M. Homberger, U. Simon, On the application potential of AuNPs in nanoelectronics and medicine. Phil. Trans. R. Soc. A 368, 1405–1453 (2010)

    Article  Google Scholar 

  13. P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P. Dederichs, K. Kern, C. Carbone, H. Brune, Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003)

    Article  Google Scholar 

  14. G. Schmid, T. Reuter, U. Simon, M. Noyong, K. Blech, V. Santhanam, D. Jäger, H. Slomka, H. Lüth, M.I. Lepsa, Generation and electrical contacting of gold quantum dots. Colloid Polym. Sci. 286, 1029–1037 (2008)

    Article  Google Scholar 

  15. M. Murugesan, D. Cunningham, J. L. Martinez-Albertos, R. M. Vrcelj and B. D. Moore, Nanoparticle-coated microcrystals. Chem. Commun. 21, 2677–2679 (2005)

    Google Scholar 

  16. Y. Fujiki, N. Tokunaga, S. Shinkai, K. Sada, Anisotropic decoration of gold nanoparticles onto specific crystal faces of organic single crystals. Angew. Chem. 45(29), 4764–4767 (2006)

    Article  Google Scholar 

  17. S. Rodríguez-Llamazares, N. Yutronic, P. Jara, M. Noyong, J. Bretschneider, U. Simon, Face preferred deposition of gold nanoparticles on α-cyclodextrin/octanethiol inclusion compound. J. Colloid Interface Sci. 316(1), 202–205 (2007)

    Article  Google Scholar 

  18. Y. Fujiki, S. Shinkai and K. Sada, Selective deposition of metal complex nanocrystals onto the surfaces of organic single crystals bearing pyridine moieties. Cryst. Growth Des. 9(6), 2751–2755 (2009)

    Google Scholar 

  19. V.T. D’Souza, K.B. Lipkowitz, Cyclodextrins: introduction. Chem. Rev. 98(5), 1741–1742 (1998)

    Article  Google Scholar 

  20. T. Loftsson, D. Duchêne, Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  Google Scholar 

  21. S. Rodríguez-Llamazares, N. Yutronic, P. Jara, M. Noyong, J. Bretschneider, U. Simon, The structure of the first supramolecular α-cyclodextrin complex with an aliphatic monofunctional carboxylic acid. Eur. J. Org. Chem. 2007(26), 4298–4300 (2007)

    Article  Google Scholar 

  22. Z. Liu, M. Frasconi, J. Lei, Z.J. Brown, Z. Zhu, D. Cao, J. Iehl, G. Liu, A.C. Fahrenbach, Y.Y. Botros, O.K. Farha, C.A. Hupp Mirkin, J.F. Stoddart, Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin. Nat. Commun. 4, 1855–1863 (2013)

    Article  Google Scholar 

  23. B. Herrera, C. Adura, N. Yutronic, M. Kogan, P. Jara, Selective nanodecoration of modified alpha-cyclodextrin inclusion compounds crystals with gold nanorods. J. Colloid Interface Sci. 389(1), 42–45 (2013)

    Article  Google Scholar 

  24. K. Harata, Structural aspects of stereo differentiation in the solid state. Chem. Rev. 98, 1803–1827 (1998)

    Article  Google Scholar 

  25. G. Wenz, B.-H. Han, A. Müller, Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106, 782–817 (2006)

    Article  Google Scholar 

  26. M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  Google Scholar 

  27. M. Díaz, N. Silva, N. Yutronic, E. Peña, B. Chornik, P. Jara, γ-Cyclodextrin/alkylthiol inclusion compounds crystals as substrates for the formation and immobilization of gold nanoparticles produced by magnetron sputtering. J. Incl. Phenom. Macrocycl. Chem. 80, 133–138 (2014)

    Article  Google Scholar 

  28. Y. Wang, J.F. Wong, X.W. Teng, X.Z. Lin, H. Yang, “Pulling” nanoparticles into water: phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of alpha-cyclodextrin. Nano Lett. 3(11), 1555–1559 (2003)

    Article  Google Scholar 

  29. N. Lala, S. Lalbegi, S. Adyanthaya, M. Sastry, Phase transfer of aqueous gold colloidal particles capped with inclusion complexes of cyclodextrin and alkanethiol molecules into chloroform. Langmuir 17(12), 3766–3768 (2001)

    Article  Google Scholar 

  30. Y. Liu, K.B. Male, P. Bouvrette, J.H.T. Luong, Control of the size and distribution of gold nanoparticles by unmodified cyclodextrins. Chem. Mater. 15(22), 4172–4180 (2003)

    Article  Google Scholar 

  31. J. Liu, W. Ong, E. Roman, M. Lynn, A. Kaifer, Cyclodextrin-modified gold nanospheres. Langmuir 16(7), 3000–3002 (2000)

    Article  Google Scholar 

  32. A.V. Kabashin, M. Meunier, C. Kingston, J.H.T. Luong, Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins. J. Phys. Chem. B 107(19), 4527–4531 (2003)

    Article  Google Scholar 

  33. L. Barrientos, P. Allende, C. Orellana, P. Jara, Ordered arrangements of metal nanoparticles on alpha-cyclodextrin inclusion complexes by magnetron sputtering. Inorg. Chim. Acta 380, 372–377 (2012)

    Article  Google Scholar 

  34. P. Jara, L. Barrientos, B. Herrera, I. Sobrados, Inclusion compounds of α-cyclodextrin with alkylthiols. J. Chil. Chem. Soc. 53(2), 1399–1401 (2008)

    Article  Google Scholar 

  35. S. Rodríguez-Llamazares, P. Jara, N. Yutronic, N. Noyong, U. Simon, Chemical adhesion of silver nanoparticles onto crystal faces of alpha cyclodextrin/carboxylic acids inclusion compounds. J. Nanosci. Nanotechnol. 12(12), 8929–8934 (2012)

    Article  Google Scholar 

  36. P. Jara, M. Justiniani, N. Yutronic, I. Sobrados, Syntheses and structural aspects of cyclodextrin/dialkylamine inclusion compounds. J. Incl. Phenom. 32(1), 1–8 (1998)

    Article  Google Scholar 

  37. B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003)

    Article  Google Scholar 

  38. D.K. Smith, B.A. Korgel, The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24, 644–649 (2008)

    Article  Google Scholar 

  39. L. Tong, Q. Wei, A. Wei, J.-X. Cheng, Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 85(1), 21–32 (2009)

    Article  Google Scholar 

  40. J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán, P. Mulvaney, Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 249, 1870–1901 (2005)

    Article  Google Scholar 

  41. T.K. Sau, C.J. Murphy, Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21, 2923–2929 (2005)

    Article  Google Scholar 

  42. K. Ishii, High-rate low kinetic energy gas-flow-sputtering system. J. Vac. Sci. Technol. A 7(2), 256–258 (1989)

    Article  Google Scholar 

  43. A. Reznickova, Z. Novotna, N.S. Kasalkova, V. Svorcik, Gold nanoparticles deposited on glass: physicochemical characterization and cytocompatibility. Nanoscale Res. Lett. 8, 252–259 (2013)

    Article  Google Scholar 

  44. Y. Hatakeyama, K. Onishi, K. Nishikawa, Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique. RSC Adv. 1, 1815–1821 (2011)

    Article  Google Scholar 

  45. X. Zhou, Q. Wei, K. Kai Sun, L. Wang, Formation of ultrafine uniform gold nanoparticles by sputtering and redeposition. Appl. Phys. Lett. 94, 133107–133110 (2009)

    Article  Google Scholar 

  46. B. Herrera, T. Bruna, D. Guerra, N. Yutronic, M.J. Kogan, P. Jara, Silver nanoparticles produced by magnetron sputtering and selective nanodecoration onto alpha- cyclodextrin/carboxylic acid inclusion compounds crystals. Adv. Nanopart. 2(2), 112–119 (2013)

    Article  Google Scholar 

  47. R.G. Pearson, Hard and soft acids and bases. J. Am. Chem. Soc. 85(22), 3533–3539 (1963)

    Article  Google Scholar 

  48. R.K. Swarnkar, S.C. Singh, P. Gopal, Effect of aging on copper nanoparticles synthesized by pulsed laser ablation in water: structural and optical characterizations. Bull. Mater. Sci. 34(7), 1363–1369 (2011)

    Article  Google Scholar 

  49. N. Silva, S. Moris, B. Herrera, M. Díaz, M. Kogan, L. Barrientos, N. Yutronic, P. Jara, Formation of copper nanoparticles supported onto inclusion compounds of a-cyclodextrin: a new route to obtain copper nanoparticles. Mol. Cryst. Liq. Cryst. 521, 246–252 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Jara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Jara, P., Herrera, B., Yutronic, N. (2015). Formation of Nanoparticles and Decoration of Organic Crystals. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics